首页> 外文期刊>International Journal for Numerical Methods in Engineering >ON LARGE DEFORMATIONS OF THIN ELASTO-PLASTIC SHELLS: IMPLEMENTATION OF A FINITE ROTATION MODEL FOR QUADRILATERAL SHELL ELEMENT
【24h】

ON LARGE DEFORMATIONS OF THIN ELASTO-PLASTIC SHELLS: IMPLEMENTATION OF A FINITE ROTATION MODEL FOR QUADRILATERAL SHELL ELEMENT

机译:弹塑性薄壳的大变形研究:四边形壳单元有限旋转模型的实现

获取原文
获取原文并翻译 | 示例

摘要

A large-deformation model for thin shells composed of elasto-plastic material is presented in this work. Formulation of the shell model, equivalent to the two-dimensional Cosserat continuum, is developed from the three-dimensional continuum by employing standard assumptions on the distribution of the displacement field in the shell body. A model for thin shells is obtained by an approximation of terms describing the shell geometry. Finite rotations of the director field are described by a rotation vector formulation. An elasto-plastic constitutive model is developed based on the von Mises yield criterion and isotropic hardening. In this work, attention is restricted to problems where strains remain small allowing for all aspects of material identification and associated computational treatment, developed for small-strain elasto-plastic models, to be transferred easily to the present elasto-plastic thin-shell model. A finite element formulation is based on the four-noded isoparametric element. A particular attention is devoted to the consistent linearization of the shell kinematics and elasto-plastic material model, in order to achieve quadratic rate of asymptotic convergence typical for the Newton-Raphson-based solution procedures. To illustrate the main objective of the present approach - namely the simulation of failures of thin elasto-plastic shells typically associated with buckling-type instabilities and/or bending-dominated shell problems resulting in formation of plastic hinges - several numerical examples are presented. Numerical results are compared with the available experimental results and representative numerical simulations.
机译:这项工作提出了一种由弹塑性材料组成的薄壳大变形模型。通过使用关于壳体内位移场分布的标准假设,从三维连续体开发了等效于二维Cosserat连续体的壳体模型。薄壳模型是通过近似描述壳几何形状的术语获得的。方向矢场的有限旋转由旋转矢量公式描述。基于冯·米塞斯屈服准则和各向同性硬化,建立了弹塑性本构模型。在这项工作中,注意力集中在应变保持很小的问题上,这些问题允许针对小应变弹塑性模型开发的材料识别和相关计算处理的各个方面轻松地转移到当前的弹塑性薄壳模型中。有限元公式基于四节点等参元素。为了达到典型的基于牛顿-拉夫森求解方法的渐近收敛的二次方渐近速率,特别需要注意壳运动学和弹塑性材料模型的一致线性化。为了说明本方法的主要目的-即模拟薄弹塑性外壳的故障,通常与屈曲型不稳定性和/或弯曲为主的外壳问题相关,从而导致形成塑料铰链-给出了几个数值示例。将数值结果与可用的实验结果和代表性数值模拟进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号