首页> 外文期刊>Industrial Biotechnology >Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap
【24h】

Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap

机译:优化氧化还原酶的辅因子特异性以产生微生物生产菌株—OptSwap

获取原文
获取原文并翻译 | 示例

摘要

Central oxidoreductase enzymes (eg, dehydrogenases, reductases) in microbial metabolism often have preferential binding specificity for one of the two major currency metabolites NAD(H) and NADP(H). These enzyme specificities result in a division of the metabolic functionality of the currency metabolites: enzymes reducing NAD~+ to NADH drive oxidative phosphorylation, and enzymes reducing NADP~+ to NADPH drive anabolic reactions. In this work, we introduce the computational method OptSwap, which predicts bioprocessing strain designs by identifying optimal modifications of the cofactor binding specificities of oxidoreductase enzyme and complementary reaction knockouts. Using the Escherichia coli genome-scale metabolic model U01366, OptSwap predicted eight growth-coupled production designs with significantly greater product yields or substrate-specific productivities than designs predicted with gene knockouts alone. These designs were identified for the production of L-alanine, succinate, acetate, and D-lactate under modeled conditions. Simulations predicted that production of L-alanine and D-lactate can be strongly coupled to growth by knocking out three reactions and swapping the cofactor specificity of one oxidoreductase reaction, while growth coupling was not predicted with four or fewer reaction knockouts under identical conditions. A succinate production design and an acetate production design were predicted to have higher maximum growth rates and higher substrate-specific productivities than designs predicted solely with reaction knockouts. The OptSwap formulation can be readily extended to additional organisms, and the constraints enforcing oxidoreductase specificity swaps can be extended to target other specificity sets of interest.
机译:微生物代谢中的中央氧化还原酶(例如,脱氢酶,还原酶)通常对两种主要货币代谢产物NAD(H)和NADP(H)之一具有优先的结合特异性。这些酶的特异性导致货币代谢物的代谢功能的划分:将NAD〜+还原为NADH的酶驱动氧化磷酸化,而将NADP〜+还原为NADPH的酶驱动合成代谢反应。在这项工作中,我们介绍了计算方法OptSwap,该方法通过确定氧化还原酶辅因子结合特异性的最佳修饰和互补反应敲除来预测生物加工菌株的设计。 OptSwap使用大肠杆菌基因组规模的代谢模型U01366,预测了八种与生长耦合的生产设计,其产品产量或底物特异性生产率要比仅基因敲除的设计高得多。确定了这些设计用于在模拟条件下生产L-丙氨酸,琥珀酸,乙酸盐和D-乳酸。模拟预测通过敲除三个反应并交换一个氧化还原酶反应的辅因子特异性,可以将L-丙氨酸和D-乳酸的产生与生长紧密结合,而在相同条件下,四个或更少的反应敲除不能预测生长偶联。预测琥珀酸生产设计和乙酸盐生产设计比仅用反应敲除预测的设计具有更高的最大生长速率和更高的底物比生产率。 OptSwap配方可以轻松扩展到其他生物,并且可以将强制氧化还原酶特异性互换的限制条件扩展到其他感兴趣的特异性靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号