首页> 外文期刊>Automatica >Event-triggered zero-gradient-sum distributed consensus optimization over directed networks
【24h】

Event-triggered zero-gradient-sum distributed consensus optimization over directed networks

机译:有向网络上事件触发的零梯度和分布式共识优化

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the event-triggered zero-gradient-sum algorithms for a distributed convex optimization problem over directed networks. The communication process is driven by trigger conditions monitored by nodes. The proposed trigger conditions are decentralized and just depend on each node's own state. In the continuous-time case, we propose an algorithm based on a sample-based monitoring scheme. In the discrete-time case, we propose a new event-triggered zero-gradient-sum algorithm which is suitable for more general network models. It is proved that two proposed event-triggered algorithms are exponentially convergent if the design parameters are chosen properly and the network topology is strongly connected and weight-balanced. Finally, we illustrate the advantages of the proposed algorithms by numerical simulation. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文针对有向网络上的分布式凸优化问题,研究了事件触发的零梯度和算法。通信过程由节点监视的触发条件驱动。提议的触发条件是分散的,并且仅取决于每个节点自己的状态。在连续时间情况下,我们提出了一种基于基于样本的监视方案的算法。在离散时间情况下,我们提出了一种新的事件触发零梯度和算法,适用于更通用的网络模型。实践证明,如果正确选择了设计参数,并且网络拓扑结构紧密相连且权重均衡,那么两种事件触发算法都具有指数收敛性。最后,我们通过数值仿真说明了所提出算法的优势。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号