首页> 外文期刊>Neural computing & applications >Real-time stage-wise object tracking in traffic scenes: an online tracker selection method via deep reinforcement learning
【24h】

Real-time stage-wise object tracking in traffic scenes: an online tracker selection method via deep reinforcement learning

机译:交通场景实时阶段目标跟踪:一种基于深度强化学习的在线跟踪器选择方法

获取原文
获取原文并翻译 | 示例

摘要

How to ensemble the high representative ability for discriminating the target from its background and high adaptive ability to fast appearance changes, while keeping the real-time performance simultaneously is still an open topic in the field of object tracking, especially in the complex urban traffic scenes. To address this issue, motivated by that existing excellent trackers may have their advantages in tackling different kinds of tracking difficulties respectively, we propose a new real-time stage-wise object tracking method that allows different trackers to complement each other and combines their respective advantages. A tracker selection agent is trained to learn the policy of switching to the most appropriate candidate tracker according to the current tracking environment. To capture the dynamics of tracking environment effectively, we consider the tracker selection problem as a Partially Observable Markov Decision Process problem. A lightweight deep neural network with the recurrent unit is designed for learning the optimal policy accurately and rapidly. We also elaborately collected Traffic Scenes Object Tracking Annotated Dataset (TS-OTAD) for demonstrating the effectiveness of our method. Experimental results conducted on TS-OTAD and OTB-100 demonstrate that our method has superior performance than any of the candidate tracker and has a good trade-off between accuracy and efficiency compared with other state-of-the-art methods. Besides, our stage-wise tracking framework is not limited to any specific tracker, and any excellent tracker can be used as the candidate, which provides a new way for boosting object tracking accuracy and efficiency.
机译:如何在兼具目标背景辨别能力和快速外观变化的高适应能力的同时,兼顾目标跟踪领域的高实时性,在复杂的城市交通场景中,仍然是一个悬而未决的课题。针对现有优秀跟踪器在解决不同类型跟踪困难方面可能具有优势的启发,我们提出了一种新的实时阶段目标跟踪方法,该方法允许不同跟踪器相互补充,并结合各自的优势。跟踪器选择代理经过培训,可以学习根据当前跟踪环境切换到最合适的候选人跟踪器的策略。为了有效地捕捉跟踪环境的动态,我们将跟踪器选择问题视为部分可观察马尔可夫决策过程问题。设计了一种带有循环单元的轻量级深度神经网络,用于准确、快速地学习最优策略。我们还精心收集了交通场景目标跟踪注释数据集(TS-OTAD),以证明我们方法的有效性。在TS-OTAD和OTB-100上进行的实验结果表明,与其他最先进的方法相比,该方法具有优于任何候选跟踪器的性能,并且在准确性和效率之间具有良好的平衡。此外,我们的分阶段跟踪框架并不局限于任何特定的跟踪器,任何优秀的跟踪器都可以作为候选者,这为提高目标跟踪的准确性和效率提供了一种新的途径。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号