首页> 外文期刊>IEEJ Transactions on Electrical and Electronic Engineering >Full Feedback Dynamic Neural Network with Exogenous Inputs for Dynamic Data-Driven Modeling in Nonlinear Dynamic Power Systems
【24h】

Full Feedback Dynamic Neural Network with Exogenous Inputs for Dynamic Data-Driven Modeling in Nonlinear Dynamic Power Systems

机译:具有外生输入的全反馈动态神经网络,用于非线性动态电力系统中的动态数据驱动建模

获取原文
获取原文并翻译 | 示例

摘要

Dynamic neural networks (DNNs) are widely used in data-driven modeling of nonlinear control systems. Due to the complexity of the actual operating nonlinear power systems, rigorous dynamic models are always unknown. DNNs can focus on methods that only use input and output information to establish accurate dynamic models and reduce noise in measured data, which is called data-driven modeling. The core of the DNN is the feedback with memory function. This paper analyzes the traditional Elman neural network (ENN) and nonlinear auto-regression with exogenous input (NARX) neural network with different structure feedback structures, and proposes a full feedback dynamic neural network (FF-DNN) with exogenous input. Eight different kinds of neural networks (including ENN, NARX, etc.) are compared and analyzed. The eight kinds of neural networks are applied on the experimental data of the DC-AC inverter and the power system of Zhejiang Juchuang Smart Technology Company Park in Wenzhou. The experimental results are used to compare the performance of the data-driven models established by eight different kinds of neural networks under different noise conditions, verify the robustness and generalization performance of dynamic data-driven modeling based on FF-DNN, and demonstrate the feasibility and effectiveness of FF-DNN in actual power systems. (C) 2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
机译:动态神经网络(款)广泛应用于数据驱动建模的非线性控制系统。操作非线性动力系统,严格的动态模型总是未知的。只使用输入和输出的方法信息建立准确的动态模型在测量数据,减少噪音,数据驱动的建模。与记忆功能的反馈。分析了传统Elman神经网络(新奥集团)和非线性按照外源输入(NARX神经网络不同结构的反馈结构提出了一个完整的动态神经网络的反馈(FF-DNN)和外源输入。种神经网络(包括新奥集团、NARX等)进行比较和分析。神经网络应用于直粱逆变器和实验数据浙江电力系统Juchuang聪明科技公司在温州公园。实验结果比较性能数据驱动模型的建立由8个不同类型的神经网络不同的噪声条件下,验证了鲁棒性和泛化性能的动态数据驱动建模基于FF-DNN和演示的可行性和有效性FF-DNN在实际电力系统。日本电气工程师学院。由威利出版期刊。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号