...
首页> 外文期刊>Bone >Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis
【24h】

Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis

机译:使用基于microCT的有限元分析在体内小鼠胫骨加载模型中表征松质骨和皮质骨应变

获取原文
获取原文并翻译 | 示例
           

摘要

The in vivo mouse tibial loading model has been increasingly used to understand the mechanisms governing the mechanobiological responses of cancellous and cortical bone tissues to physical stimuli. Accurate characterization of the strain environment throughout the tibia is fundamental in relating localized mechanobiological processes to specific strain stimuli in the skeleton. MicroCT-based finite element analysis, together with diaphyseal strain gauge measures, was conducted to quantify the strain field in the tibiae of 16-wk-old female C57B1/6 mice during in vivo dynamic compressive loading. Despite a strong correlation between the experimentally-measured and computationally-modeled strains at the gauge site, no correlations existed between the strain at the gauge site and the peak strains in the proximal cancellous and midshaft cortical bone, indicating the limitations of using a single diaphyseal strain gauge to estimate strain in the entire tibia. The peak compressive and tensile principal strain magnitudes in the proximal cancellous bone were 10% and 34% lower than those in the midshaft cortical bone. Sensitivity analyses showed that modeling bone tissue as a heterogeneous material had a strong effect on cancellous strain characterization while cortical strain and whole-bone stiffness were primarily affected by the presence of the fibula and the proximal boundary conditions. These results show that microCT-based finite element analysis combined with strain gauge measures provides detailed resolution of the tissue-level strain in both the cancellous and cortical bones of the mouse tibia during in vivo compression loading, which is necessary for interpreting localized patterns of modeling/remodeling and, potentially, gene and protein expression in skeletal mechanobiology studies.
机译:体内小鼠胫骨负荷模型已被越来越多地用于理解控制松质和皮质骨组织对物理刺激的力学生物学反应的机制。准确表征整个胫骨的应变环境是将局部力学生物学过程与骨骼中特定应变刺激相关联的基础。进行了基于MicroCT的有限元分析,以及干gauge端应变计测量,以量化体内动态压缩负荷期间16周龄雌性C57B1 / 6小鼠胫骨的应变场。尽管在规规部位的实验测量和计算模型应变之间具有很强的相关性,规规部位的应变与近端松质和中轴皮质骨的峰值应变之间不存在相关性,这表明使用单根干骨的局限性应变仪以估计整个胫骨的应变。近端松质骨的峰值压缩和拉伸主应变幅度比中轴皮质骨的峰值低10%和34%。敏感性分析表明,将骨组织建模为异质材料对松质骨应变特征有很强的影响,而皮质骨应变和全骨刚度主要受腓骨的存在和近端边界条件的影响。这些结果表明,基于microCT的有限元分析与应变仪测量相结合,可以提供详细的分辨率来分辨体内压缩载荷下小鼠胫骨的松质骨和皮质骨中组织水平的应变,这对于解释局部建模模式是必需的骨骼力学生物学研究中的/重塑以及潜在的基因和蛋白质表达。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号