...
首页> 外文期刊>Biomechanics and modeling in mechanobiology >Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
【24h】

Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.

机译:小鼠尾椎素加载模型的实验性和有限元分析:皮质骨质骨骼骨骼调节预测。

获取原文
获取原文并翻译 | 示例

摘要

In this study, we attempt to predict cortical and trabecular bone adaptation in the mouse caudal vertebrae loading model using knowledge of bone's local mechanical environment at the onset of loading. In a previous study, we demonstrated appreciable 25.9 and 11% increases in both trabecular and cortical bone volume density, respectively, when subjecting the fifth caudal vertebrae (C5) of C57BL/6 (B6) mice to an acute loading regime (amplitude of 8N, 3000 cycles, 10 Hz, 3 times a week for 4 weeks). We have also established a validated finite element (FE) model of the C5 vertebra using micro-computed tomography (micro-CT), which characterizes, in 3D, the micro-mechanical strains present in both cortical and trabecular compartments due to the applied loads. To investigate the relationship between load-induced bone adaptation and mechanical strains in-vivo and in-silico data sets were compared. Using data from the previous cross-sectional study, we divided cortical and trabecular compartments into 15 subregions and determined, for each region, a bone formation parameter ΔBV/BS (a cross-sectional measure of the bone volume added to cortical and trabecular surfaces following the described loading regime). Linear regression was then used to correlate mean regional values of ΔBV/BS with mean values of mechanical strains derived from the FE models which were similarly regionalized. The mechanical parameters investigated were strain energy density (SED), the orthogonal strains (e (x), e (y), e (z)) and the three shear strains (e (xy), e (yz), e (zx)). For cortical regions, regression analysis showed SED to correlate extremely well with ΔBV/BS (R (2) = 0.82) and e (z) (R (2) = 0.89). Furthermore, SED was found to predict expansion of the cortical shell correlating significantly with the regional percentage increases in cortical tissue volume (R (2) = 0.92), cortical marrow volume (R (2) = 0.91) and cortical thickness (R (2) = 0.56). For trabecular regions, FE parameters were found not to correlate with load-induced trabecular bone morphology. These results indicate that load-induced cortical morphology can be predicted from population data, whereas the prediction of trabecular morphology requires subject-specific micro- architecture.
机译:在这项研究中,我们试图利用骨局部机械环境的知识在载荷开始时预测小鼠尾部椎骨加载模型中的皮质和小梁骨适应。在先前的研究中,当将C57BL / 6(B6)小鼠的第五尾椎骨(C5)对急性装载制度(8N幅度为8n ,3000个循环,10 Hz,每周3次,4周)。我们还使用微计算断层摄影(Micro-CT)建立了C5椎骨的验证有限元(Fe)模型,其在3D中表征了由于所施加的负载而存在于皮质和绳索舱内的微机械菌株。为了研究负载诱导的骨适应与体内机械菌株和硅基菌群之间的关系。使用来自先前的横截面研究的数据,我们将皮质和小梁隔室分为15个次区域并针对每个区域确定骨形成参数ΔBV/ BS(添加到皮质和颌骨表面的骨体积的横截面测量所述装载制度)。然后使用线性回归来关联ΔBV/ BS的平均区域值,其具有衍生自用于类似地区域化的Fe模型的机械菌株的平均值。研究的机械参数是应变能密度(SED),正交菌株(E(X),E),E(Z))和三种剪切菌株(E(XY),E(YZ),E(Zx )))。对于皮质区域,回归分析显示,SED与ΔBV/ BS(R(2)= 0.82)和E(Z)(R(2)= 0.89)相互作用。此外,发现SED预测皮质壳的膨胀随着皮质组织体积的(R(2)= 0.92),皮质骨髓(R(2)= 0.91)和皮质厚度(R(2 )= 0.56)。对于小指生区域,发现Fe参数与负荷诱导的小梁骨形态不相关。这些结果表明,可以从人口数据预测载荷引起的皮质形态,而预测小梁形态的预测需要特定于学科的微架构。

著录项

  • 来源
  • 作者单位

    Institute for Biomechanics ETH Zürich Wolfgang-Pauli-Strasse 10 8093 Zürich Switzerland.;

    Institute for Biomechanics ETH Zürich Wolfgang-Pauli-Strasse 10 8093 Zürich Switzerland.;

    Institute for Biomechanics ETH Zürich Wolfgang-Pauli-Strasse 10 8093 Zürich Switzerland.;

    Institute for Biomechanics ETH Zürich Wolfgang-Pauli-Strasse 10 8093 Zürich Switzerland.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物力学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号