首页> 外文期刊>Applied Soft Computing >Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review
【24h】

Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review

机译:进化计算在股票算法交易中规则发现中的应用:文献综述

获取原文
获取原文并翻译 | 示例

摘要

Despite the wide application of evolutionary computation (EC) techniques to rule discovery in stock algorithmic trading (AT), a comprehensive literature review on this topic is unavailable. Therefore, this paper aims to provide the first systematic literature review on the state-of-the-art application of EC techniques for rule discovery in stock AT. Out of 650 articles published before 2013 (inclusive), 51 relevant articles from 24 journals were confirmed. These papers were reviewed and grouped into three analytical method categories (fundamental analysis, technical analysis, and blending analysis) and three EC technique categories (evolutionary algorithm, swarm intelligence, and hybrid EC techniques). A significant bias toward the applications of genetic algorithm-based (GA) and genetic programming-based (GP) techniques in technical trading rule discovery is observed. Other EC techniques and fundamental analysis lack sufficient study. Furthermore, we summarize the information on the evaluation scheme of selected papers and particularly analyze the researches which compare their models with buy and hold strategy (B&H). We observe an interesting phenomenon where most of the existing techniques perform effectively in the downtrend and poorly in the uptrend, and considering the distribution of research in the classification framework, we suggest that this phenomenon can be attributed to the inclination of factor selections and problem in transaction cost selections. We also observe the significant influence of the transaction cost change on the margins of excess return. Other influenced factors are also presented in detail. The absence of ways for market trend prediction and the selection of transaction cost are two major limitations of the studies reviewed. In addition, the combination of trading rule discovery techniques and portfolio selection is a major research gap. Our review reveals the research focus and gaps in applying EC techniques for rule discovery in stock AT and suggests a roadmap for future research. (C) 2015 Elsevier B.V. All rights reserved.
机译:尽管将进化计算(EC)技术广泛应用于股票算法交易(AT)中的规则发现,但尚无关于此主题的全面文献综述。因此,本文旨在就EC技术在股票AT中的规则发现的最新应用提供首次系统的文献综述。在2013年(含)之前发表的650篇文章中,确认了24种期刊的51篇相关文章。对这些论文进行了回顾,并将其分为三个分析方法类别(基本分析,技术分析和混合分析)和三个EC技术类别(进化算法,群体智能和混合EC技术)。观察到在技术交易规则发现中对基于遗传算法(GA)和基于遗传程序设计(GP)技术的应用存在明显偏见。其他EC技术和基础分析缺乏足够的研究。此外,我们总结了有关精选论文评估方案的信息,并特别分析了将其模型与购买和持有策略(B&H)进行比较的研究。我们观察到一个有趣的现象,即大多数现有技术在下降趋势中表现良好,而在上升趋势中表现不佳,考虑到分类框架中的研究分布,我们建议将此现象归因于因素选择和问题的倾向。交易成本选择。我们还观察到交易成本变化对超额收益保证金的重大影响。还详细介绍了其他影响因素。市场趋势预测方法的缺乏和交易成本的选择是所审查研究的两个主要限制。此外,交易规则发现技术和投资组合选择的结合是一个主要的研究空白。我们的评论揭示了应用EC技术进行股票AT规则发现的研究重点和差距,并提出了未来研究的路线图。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号