首页> 外文期刊>Nanoscale >Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films
【24h】

Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films

机译:光诱导电子转移控制金属氧化物PbS@CdS core@shell量子点纳米薄膜

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the long term stability of the cells. Application of a passivating CdS shell guarantees the increased long term stability of PbS QDs, but can negatively affect photoinduced charge transfer from the QD to the oxide and the resulting photoconversion efficiency (PCE). For this reason, the characterization of electron injection rates in these systems is very important, yet has never been reported. Here we investigate the photoelectron transfer rate from PbS@CdS core@shell QDs to wide bandgap semiconducting mesoporous films using photoluminescence (PL) lifetime spectroscopy. The different electron affinity of the oxides (SiO2, TiO2 and SnO2), the core size and the shell thickness allow us to fine tune the electron injection rate by determining the width and height of the energy barrier for tunneling from the core to the oxide. Theoretical modeling using the semi-classical approximation provides an estimate for the escape time of an electron from the QD 1S state, in good agreement with experiments. The results demonstrate the possibility of obtaining fast charge injection in near infrared (NIR) QDs stabilized by an external shell (injection rates in the range of 110-250 ns for Ti02 films and in the range of 100-170 ns for SnO2 films for PbS cores with diameters in the 3-4.2 nm range and shell thickness around 0.3 nm), with the aim of providing viable solutions to the stability issues typical of NIR QDs capped with pure organic ligand shells.
机译:n型金属氧化物太阳能电池敏化红外吸收PbS量子点(量子点)代表一个有前途的替代传统光伏设备。限制与纯有机配体壳受到影响表面氧化的长期影响稳定的细胞。增加钝化cd壳担保量子点PbS的长期稳定性,但可以负面影响光诱导电荷转移从QD氧化和由此产生的photoconversion效率(PCE)。原因,电子的特性注入率这些系统非常重要,但从未被报告过。调查光电子转移率量子点PbS@CdS core@shell宽禁带半导体介孔膜使用光致发光(PL)终身光谱学。不同的电子亲和能的氧化物(二氧化硅,二氧化钛和SnO2),核心的大小和外壳厚度允许我们调整电子通过确定宽度和注射速率高度的能量势垒的隧穿核心的氧化。半经典近似提供了一个估计一个电子的逃跑时间QD 1 s状态,在良好的协议实验。获得快速电荷注入的可能性量子点近红外(NIR)由外部稳定shell(注入率的范围110 - 250 nsTi02电影和在100 - 170 ns的范围SnO2电影PbS芯的直径3 - 4.2 nm范围和凝固壳厚度约0.3海里),目标是提供可行的解决方案典型的近红外量子点封顶的稳定性问题与纯有机配体壳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号