首页> 外文期刊>Applied Geomatics >Assessment of the direct inversion scheme for the quasigeoid modeling based on applying the Levenberg–Marquardt algorithm
【24h】

Assessment of the direct inversion scheme for the quasigeoid modeling based on applying the Levenberg–Marquardt algorithm

机译:基于Levenberg-Marquardt算法的准类群建模直接反演方案评估

获取原文
获取原文并翻译 | 示例
       

摘要

Methods for a spherical harmonic analysis and synthesis are often used in describing the global gravity field by means of spherical harmonics to a certain degree of spectral resolution. In local gravity field modeling, the radial basis functions (RBFs) can be used to parameterize the gravity field with a high spatial/spectral resolution because of their local support. Since the global integration is required in both cases, these two methods are somehow complementary. In physical geodesy, this is done practically by adopting a remove-computerestore numerical scheme. According to this scheme, a longwavelength part of the gravity spectrum is defined by means of the spherical harmonics while a residual (high-frequency) gravity contribution is treated based on using the RBFs. To find an optimal parameterization of the gravity field, the number of RBFs and their spatial configuration are optional. Moreover, the regularization is applied to stabilize the (ill-posed) gravity inversion. In this study, we utilize the Levenberg–Marquardt (LM) algorithm for finding the optimal number of RBFs and their 3-D spatial configuration (i.e., horizontal location and depth) simultaneously with a regularization parameter. The optimal choice of these parameters is based on minimizing the least-squares residuals between the predicted and observed values of the potential and gravity field. In numerical experiment, we apply the LM algorithm in two inverse schemes of solving the Molodensky's problem. The results reveal that a direct inversion of the observed gravity data to the potential field (i.e., quasigeoid heights) yields a systematic bias. Moreover, this gravimetric solution has a low approximation quality in terms of the potential field. The systematic discrepancies are thus modeled and corrected for by combining the gravity and GPSleveling data.We propose and apply the RBF-parameterization, which again utilizes the LM optimization algorithm in combining these data. We demonstrate that only a two-step approach provides a satisfactory approximation to both the gravity and potential field.
机译:球形谐波分析和合成的方法通常用于以一定程度的光谱分辨率通过球形谐波描述全局重力场。在局部重力场建模中,由于径向基础函数(RBF)的局部支持,因此可用于以高空间/光谱分辨率对重力场进行参数化。由于在两种情况下都需要全局集成,因此这两种方法在某种程度上是互补的。在物理大地测量学中,这实际上是通过采用删除计算机存储数值方案来完成的。根据该方案,重力频谱的长波部分是通过球谐函数定义的,而剩余的(高频)重力贡献则是基于使用RBF进行处理的。为了找到重力场的最佳参数,RBF的数量及其空间配置是可选的。此外,应用正则化来稳定(不适定的)重力反演。在这项研究中,我们利用Levenberg-Marquardt(LM)算法查找带有规则化参数的RBF的最佳数量及其3-D空间配置(即水平位置和深度)。这些参数的最佳选择基于最小化势场和重力场的预测值与观测值之间的最小二乘残差。在数值实验中,我们将LM算法应用于解决Molodensky问题的两个逆方案中。结果表明,将观测到的重力数据直接反转为势场(即准类星体高度)会产生系统偏差。此外,就势场而言,这种重量解具有较低的近似质量。因此,通过结合重力和GPS水准测量数据对系统差异进行建模和校正。我们提出并应用了RBF参数化方法,该方法再次利用LM优化算法来组合这些数据。我们证明,只有两步法可以为重力场和势场提供令人满意的近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号