首页> 外文期刊>Applied bionics and biomechanics >A collision-free path-planning method for an articulated mobile robot
【24h】

A collision-free path-planning method for an articulated mobile robot

机译:铰接式移动机器人的无碰撞路径规划方法

获取原文
获取原文并翻译 | 示例
           

摘要

In previous works, we treated the collision-free path-planning problem for a nonholonomic mobile robot in a cluttered environment. We used a method based on a representation of the obstacles on the robot's velocity space. This representation is called Feasible Velocities Polygon (FVP). Every obstacle in the robot's influence zone is represented by a linear constraint on the robot's velocities such that a collision between the robot and the obstacle could be avoided. These constraints define a convex subset in the velocity space, the FVP. Every velocity vector in the FVP ensures a safe motion for the given obstacle configuration. The path-planning problem is solved by an optimization approach between the FVP and a reference velocity to reach the goal. In this paper, we have extended our work to an articulated mobile robot evolving in a cluttered environment. This robot is composed of a differential mobile robot and one or several modules that together form the trailer which are linked by off-center joints. This kind of robot is a strongly constrained system. Even in a free environment, under some circumstances, the robot may be blocked by its trailers in its progression towards the goal. The proposed approach, compared to other methods, has the main advantage of integrating anti-collision constraints between the articulated robot itself and the environment, in order to avoid and resolve dead-lock situations. For moving to the final position, the articulated mobile robot uses the FVP and a reference control law, to formulate the constraints method as a problem of minimal distance calculation. This formulation is then solved with the algorithm of minimal distance calculation proposed by Zeghloul (Zeghloul and Rambeaud, 1996). When a dead-locking situation arises and according to the robot-obstacle configuration, we have developed three different modules to solve these conditions. Each module uses a different approach to resolve the blocking situation. In order to show the capabilities of our method to lead the articulated robot to the final position in a stable way, a numerical result is presented.
机译:在先前的工作中,我们在杂乱的环境中处理了非完整移动机器人的无碰撞路径规划问题。我们使用了一种基于机器人速度空间上障碍物表示的方法。这种表示称为可行速度多边形(FVP)。机器人影响区域中的每个障碍物都由对机器人速度的线性约束来表示,因此可以避免机器人与障碍物之间的碰撞。这些约束在速度空间FVP中定义了一个凸子集。 FVP中的每个速度矢量可确保给定障碍物配置的安全运动。通过在FVP和参考速度之间达成目标的优化方法解决了路径规划问题。在本文中,我们将工作扩展到在混乱环境中发展的铰接式移动机器人。该机器人由差速移动机器人和一个或几个模块组成,这些模块一起构成挂车,这些挂车通过偏心关节链接在一起。这种机器人是一个受严格限制的系统。即使在自由环境中,在某些情况下,机器人在驶向目标的过程中也可能会被其拖车挡住。与其他方法相比,所提出的方法的主要优点是在关节式机器人自身与环境之间集成了防碰撞约束,从而避免并解决了死锁情况。为了移动到最终位置,多关节移动机器人使用FVP和参考控制律将约束方法表述为最小距离计算的问题。然后用Zeghloul提出的最小距离计算算法(Zeghloul和Rambeaud,1996)求解该公式。当出现死锁情况时,并且根据机器人的障碍物配置,我们开发了三种不同的模块来解决这些情况。每个模块使用不同的方法来解决阻塞情况。为了展示我们的方法以稳定的方式将多关节机器人引导到最终位置的能力,给出了数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号