...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Verification of electric steel punching simulation results using microhardness
【24h】

Verification of electric steel punching simulation results using microhardness

机译:使用微硬度验证电钢冲压模拟结果

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

One of the most dominant manufacturing methods in the production of electromechanical devices from sheet metal is punching. In punching, the material undergoes plastic deformation and finally fracture. Punching of an electrical steel sheet causes plastic deformation on the edges of the part, which affects the magnetic properties of the material, i.e., increases iron losses in the material, which in turn has a negative effect on the performance of the electromagnetic devices in the final product. Therefore, punching-induced iron losses decrease the energy efficiency of the device. FEM simulations of punching have shown significantly increased plastic deformation on the workpiece edges with increasing tool wear. In order to identify the critical tool wear, after which the iron losses have increased beyond acceptable limits, the simulation results must be verified with experimental methods. The acceptable limits are pushed further in the standards by the International Electrotechnical Commission (IEC). The new standard (IEC TS 60034-30-2:2016) has much stricter limits regarding the energy efficiency of electromechanical machines, with an IE5 class efficiency that exceeds the previous IE4 class (IEC 60034-30-1:2014) requirements by 30%. The simulations are done using Scientific Forming Technologies Corporation Deform, a finite element software for material processing simulations. The electrical steel used is M400-50A, and the tool material is Vanadis 23, a powder-based high-speed steel. Vanadis 23 is a high alloyed powder metallurgical high-speed steel with a high abrasive wear resistance and a high compressive strength. It is suitable for cold work processing like punching. In the existing literature, FEM simulations and experimental methods have been incorporated for investigating the edge deformation properties of sheared surfaces, but there is a research gap in verifying the simulation results with the experimental methods. In this paper, FEM simulation of the punching process is verified using an electrical steel sheet from real production environment and measuring the deformation of the edges using microhardness measurements. The simulations show high plastic deformation 50 mu m into the workpiece edge, a result that is shown to be in good agreement with the experimental results.
机译:冲压是利用金属板生产机电设备的最主要的制造方法之一。在冲孔过程中,材料经历塑性变形,最终断裂。电钢板的冲压会导致零件边缘发生塑性变形,从而影响材料的磁性,即增加材料中的铁损耗,进而对最终产品中的电磁设备的性能产生负面影响。因此,冲孔引起的铁损耗会降低设备的能效。冲压的有限元模拟显示,随着刀具磨损的增加,工件边缘的塑性变形显著增加。为了确定临界刀具磨损,在此之后,铁损耗增加到可接受的极限之外,必须用实验方法验证模拟结果。国际电工委员会(IEC)在标准中进一步提高了可接受的限值。新标准(IEC TS 60034-30-2:2016)对机电设备的能效有更严格的限制,IE5级能效比之前的IE4级(IEC 60034-30-1:2014)要求高出30%。模拟是使用科学成形技术公司Deform进行的,Deform是一种用于材料加工模拟的有限元软件。使用的电工钢为M400-50A,工具材料为Vanadis 23,一种粉末基高速钢。Vanadis 23是一种高合金粉末冶金高速钢,具有高耐磨性和高抗压强度。适用于冲压等冷加工。在现有文献中,有限元模拟和实验方法已被用于研究剪切表面的边缘变形特性,但在用实验方法验证模拟结果方面存在研究空白。本文以实际生产环境中的一块电工钢板为例,对冲压过程进行了有限元模拟,并用显微硬度测量方法测量了边缘的变形。模拟结果显示,工件边缘有50μm的高塑性变形,这一结果与实验结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号