首页> 外文期刊>Analytical methods >Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase entrapped in a self-supporting nanoporous gold electrode: a new strategy to improve the orientation of immobilized enzymes
【24h】

Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase entrapped in a self-supporting nanoporous gold electrode: a new strategy to improve the orientation of immobilized enzymes

机译:自支撑纳米多孔金电极中捕获的辣根过氧化物酶的直接电化学和生物电催化:改善固定化酶方向的新策略

获取原文
获取原文并翻译 | 示例
       

摘要

The single redox active center (heme) is located deeply and asymmetrically in horseradish peroxidase (HRP), leading to a low direct electron transfer efficiency of HRP with random orientation on plane electrodes. To improve its orientation and availability, HRP was attempted to be embedded into a porous material in this study, benefiting from the encapsulation of nanopores. A self-supporting nanoporous gold electrode (NPGE) was preferred and first prepared in a water/air-stable ionic liquid ([choline]Cl center dot 2ZnCl(2)) using an electrochemical alloying/dealloying method. To obtain suitable pores for HRP, the effect of temperature, which was a key factor for the formation of the Au-Zn alloy, on the morphology of the NPGE was investigated, realizing the temperature control for the pore size. The direct electrochemistry and bioelectrocatalysis of HRP embedded into the suitable nanopores were investigated detailedly. The proportion of the enzyme molecules with effective direct electron transfer was as high as 85.8% of the total amount of the immobilized HRP. The apparent electron transfer rate constant was calculated to be (2.04 +/- 0.12) s(-1). This biosensor displayed an excellent and rapid electrocatalytic response to H2O2 at a low overpotential with a linear range of 10-380 mu M, a sensitivity of 21 mu A mM(-1) and a detection limit of 2.6 mu M (S/N = 3), and it possessed good stability, reproducibility and selectivity for H2O2. This easy but effective strategy is not only favorable for improving the orientation of HRP in nanopores, but also takes advantage of the electron acceleration of the nano-ligaments of NPG, expanding the application field of NPG in electrochemical biosensors.
机译:单个氧化还原活性中心(血红素)位于辣根过氧化物酶(HRP)中,位置较深且不对称,导致HRP在平面电极上具有随机取向的直接电子转移效率较低。为了提高其方向性和可用性,本研究尝试将HRP嵌入多孔材料中,从而受益于纳米孔的封装。优选自支撑的纳米多孔金电极(NPGE),首先使用电化学合金化/脱合金方法在水/空气稳定的离子液体([Cl] Cl中心点2ZnCl(2))中制备。为了获得适合HRP的孔,研究了温度(这是形成Au-Zn合金的关键因素)对NPGE形态的影响,从而实现了对孔尺寸的温度控制。详细研究了嵌入合适纳米孔中的HRP的直接电化学和生物电催化作用。具有有效的直接电子转移的酶分子的比例高达固定化HRP总量的85.8%。表观电子传递速率常数经计算为(2.04 +/- 0.12)s(-1)。该生物传感器在低超电势下显示出对H2O2的出色且快速的电催化响应,线性范围为10-380μM,灵敏度为21μAmM(-1),检测极限为2.6μM(S / N = 3),并且对H2O2具有良好的稳定性,重现性和选择性。这种简单有效的策略不仅有利于提高HRP在纳米孔中的取向,而且还利用了NPG纳米配体的电子加速作用,扩大了NPG在电化学生物传感器中的应用领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号