首页> 外文期刊>Biosystems Engineering >A novel hyperspectral-based approach for identification of maize kernels infected with diverse Aspergillus flavus fungi
【24h】

A novel hyperspectral-based approach for identification of maize kernels infected with diverse Aspergillus flavus fungi

机译:一种新的高光谱鉴定鉴定玉米核心,感染多样性曲霉属植物真菌

获取原文
获取原文并翻译 | 示例

摘要

Near infrared hyperspectral imaging over the spectral range of 900-2500 nm was investigated for its potential to identify maize kernels inoculated with aflatoxigenic fungus (AF13) from healthy kernels and kernels inoculated with non-aflatoxigenic fungus (AF36). A total of 900 kernels were used with 3 treatments, namely, each 300 kernels inoculated with AF13, AF36 and sterile distilled water as control, separately. One hundred kernels from each treatment of 300 kernels were incubated for 3, 5 and 8 days, to obtain diverse samples. Based on the full mean spectra extracted from the same kernel side(s), the best mean overall prediction accuracies achieved were 96.3% for the 3-class (control, non-aflatoxigenic and aflatoxigenic) classification and 97.8% for the 2-class (aflatoxigenic-negative and -positive) classification using the partial least-squares discriminant analysis (PLS-DA) method. The 3-class and 2-class models using the full mean spectra extracted from different kernel sides had the best mean overall prediction accuracies of 91.5% and 95.1%. Using the most important 30, 55 and 100 variables determined by the random frog (RF) algorithm, the simplified type I-RF-PLSDA models achieved the mean overall prediction accuracies of 87.7%, 93.8% and 95.2% for the 2-class discrimination using different kernel sides' information. Among the most important 55 and 100 variables, a total of 25 and 67 variables were consistently selected in the 100 random runs and were therefore used further for establishing the type II-RF-PLSDA models. Using these 25 and 67 variables, the type II-RF-PLSDA models obtained the mean overall prediction accuracies of 82.3% and 94.9% separately. (C) 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
机译:研究了在900-2500nm的光谱范围内的近红外高光谱成像,其可能鉴定接种玉米核(AF13)的玉米核(AF13),从健康的核和核接种,接种着非植物真菌(AF36)。共有900个粒子与3种处理一起使用,即每300个核接种AF13,AF36和无菌蒸馏水作为对照,分别。从每种治疗300个核的一百粒孵育3,5和8天,以获得各种样品。基于从相同的核侧提取的全平均光谱,3级(对照,非黄曲生毒性和黄萎毒性)分类的最佳平均总体预测精度为96.3%,2级(使用局部最小二乘判别分析(PLS-DA)方法的脱脂毒性阴性和叠数。使用从不同核侧提取的全平均光谱的3级和2级模型具有91.5%和95.1%的最佳平均值整体预测精度。使用由随机青蛙(RF)算法确定的最重要的30,55和100变量,简化的I-RF-PLSDA模型实现了2级歧视的平均总体预测精度为87.7%,93.8%和95.2%使用不同的内核边的信息。在最重要的55和100变量中,在100个随机运行中,总共选择了总共25和67个变量,因此进一步用于建立II-RF-PLSDA模型。使用这些25和67个变量,II-RF-PLSDA模型分别获得了82.3%和94.9%的平均总体预测精度。 (c)2020 IAGRE。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号