...
首页> 外文期刊>Applied mathematics and computation >Nanofluids as coolant in a shell and tube heat exchanger: ANN modeling and multi-objective optimization
【24h】

Nanofluids as coolant in a shell and tube heat exchanger: ANN modeling and multi-objective optimization

机译:纳米流体作为壳体和管热交换器中的冷却剂:ANN建模和多目标优化

获取原文
获取原文并翻译 | 示例

摘要

In the present study, an artificial neural network (ANN) was developed to predict the thermal and hydrodynamic behavior of two types of Newtonian nanofluids used as coolants in a shell and tube heat exchanger (STHE). Inputs of the ANN model are nanoparticle volume concentration, Reynolds number, nanoparticle thermal conductivity, and Prandtl number. Results indicate that the ANN model predicts the experimental data with very high accuracy. Values of Nusselt number resulted from experiments and those obtained from the ANN have at most 9% difference, this value is 9.6% for the pressure drop. Multi-objective optimization was implemented with the aim of minimizing the total pressure drop and maximizing the nanofluids Nusselt number in the STHE according to NSGA-II algorithm. In optimization procedure nanofluids pressure drop and the Nusselt number (tube-side) was evaluated by the ANN model. To find the shell-side pressure drop method of Delaware was employed. Nanofluids concentration and Reynolds number were selected as decision parameters. The Pareto front was obtained. The best solution adopted from points on the Pareto front by two well-known decision-making methods LINMAP and TOPSIS. The Nusselt number of optimal solutions are about 30% greater than the base fluid and pressure drop of optimal solutions are about 10% lower than the base fluid. (C) 2019 Elsevier Inc. All rights reserved.
机译:在本研究中,开发了一种人工神经网络(ANN)以预测两种类型的牛顿纳米流体的热和流体动力学行为用作壳体热交换器中的冷却剂(STHE)。 ANN模型的输入是纳米颗粒体积浓度,雷诺数,纳米颗粒导热率和PRANDTL数。结果表明,ANN模型以非常高的精度预测实验数据。从实验和从ANN获得的那些产生的营养数量和从ANN获得的值最多为9%,该值为压降为9.6%。实施多目标优化,目的是最小化总压降并根据NSGA-II算法最大化STHE中的纳米流体篮板数。在优化过程中,通过ANN模型评估纳米流体压降和纽带数(管侧)。找到特拉华州的壳侧压降方法。选择纳米流体浓度和雷诺数作为决策参数。帕累托前线获得。通过两个众所周知的决策方法Linmap和Topsis从帕累托前面采用的最佳解决方案。最佳溶液的良好溶液数量大于大约30%,大于基础流体,最佳溶液的压降比基础流体低约10%。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号