...
首页> 外文期刊>Biochemistry >Drug Interactions with Bacillus anthracis Topoisomerase IV:Biochemical Basis for Quinolone Action and Resistance
【24h】

Drug Interactions with Bacillus anthracis Topoisomerase IV:Biochemical Basis for Quinolone Action and Resistance

机译:药物相互作用与蒽芽孢杆菌甲状腺异构体IV:喹诺酮作用和抗性的生化基础

获取原文
获取原文并翻译 | 示例
           

摘要

Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone action and resistance, we characterized wild-type B. anthracis topoisomerase IV, the GrlAS81F and GrlA~(S81Y) quinolone-resistant mutants, and the effects of quinolones and a related quinazolinedione on these enzymes. Ser81 is believed to anchor a water-Mg~(2+) bridge that coordinates quinolones to the enzyme through the C3/C4 keto acid. Consistent with this hypothesized bridge, ciprofloxacin required increased Mg~(2+) concentrations to support DNA cleavage by GrlAS81F topoisomerase IV. The three enzymes displayed similar catalytic activities in the absence of drugs. However, the resistance mutations decreased the affinity of topoisomerase IV for ciprofloxacin and other quinolones, diminished quinolone-induced inhibition of DNA religation, and reduced the stability of the enzyme-quinolone-DNA ternary complex. Wild-type DNA cleavage levels were generated by mutant enzymes at high quinolone concentrations, suggesting that increased drug potency could overcome resistance. 8-Methyl-quinazoline-2,4-dione, which lacks the quinolone keto acid (and presumably does not require the water-Mg~(2+) bridge to mediate protein interactions), was more potent than quinolones against wild-type topoisomerase IV and was equally efficacious. Moreover, it maintained high potency and efficacy against the mutant enzymes, effectively inhibited DNA religation, and formed stable ternary complexes. Our findings provide an underlying biochemical basis for the ability of quinazolinediones to overcome clinically relevant quinolone resistance mutations in bacterial type II topoisomerases.
机译:炭疽杆菌是炭疽病的致病因子被认为是生物利亚猴的严重威胁。最常用于治疗炭疽的药物是喹诺酮类,其通过增加拓扑异构酶IV和乙酶介导的DNA裂解水平。喹啉抗性最常与这些酶中的特定丝氨酸突变相关。因此,为了确定喹诺酮作用和抗性的基础,我们表征了野生型B.蒽醇型甲状腺异构酶IV,GRLAS81F和GRLA〜(S81Y)喹诺酮类抗突变体,以及喹诺酮类和相关喹唑啉代酮对这些酶的影响。 SER81被认为锚定水 - Mg〜(2+)桥,其通过C3 / C4酮酸将喹诺酮协调为酶。与该假设桥梁一致,CiProfloxacin需要增加的Mg〜(2+)浓度,以支持GRLAS81F拓扑异构酶IV的DNA切割。在没有药物的情况下,三种酶在没有药物的情况下显示出类似的催化活性。然而,抗性突变降低了拓扑异构酶IV对环丙沙星和其他喹诺酮类喹啉的亲和力,减少喹诺酮诱导的DNA缓解抑制,降低了酶 - 喹诺酮-DNA三元复合物的稳定性。通过高喹啉浓度的突变酶产生野生型DNA裂解水平,表明药物效力增加可以克服抗性。缺乏喹诺酮酮酸的8-甲基 - 喹唑啉-2,4-二酮(并且可能是不需要水 - mg〜(2+)桥介导蛋白质相互作用),比对野生型拓扑异构酶的喹诺酮更有效IV和同样有效。此外,它保持高效力和针对突变酶的功效,有效地抑制DNA缓解,形成稳定的三元复合物。我们的研究结果为喹唑啉代克克服细菌II型拓扑异构酶克服临床相关的喹啉抗突变的能力提供了潜在的生化基础。

著录项

  • 来源
    《Biochemistry》 |2012年第1期|共12页
  • 作者单位

    Department of Biochemistry Vanderbilt University School of Medicine Nashville Tennessee 37232-0146 United States;

    Department of Microbiology University of Alabama at Birmingham Birmingham Alabama 35294 United States;

    Department of Chemistry University of Alabama at Birmingham Birmingham Alabama 35294 United States;

    Division of Medicinal and Natural Products Chemistry University of Iowa College of Pharmacy Iowa City Iowa 52242 United States;

    Department of Chemistry University of Alabama at Birmingham Birmingham Alabama 35294 United States;

    Department of Microbiology University of Alabama at Birmingham Birmingham Alabama 35294 United States;

    Department of Biochemistry Vanderbilt University School of Medicine Nashville Tennessee 37232-0146 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

    Drug; Interactions; Bacillus;

    机译:药物;相互作用;芽孢杆菌;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号