首页> 外文期刊>Nucleic Acids Research >Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance
【24h】

Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance

机译:拓扑异构酶IV-喹诺酮相互作用是通过水-金属离子桥介导的:喹诺酮耐药性的机制基础

获取原文
获取原文并翻译 | 示例
           

摘要

Although quinolones are the most commonly prescribed antibacterials, their use is threatened by an increasing prevalence of resistance. The most common causes of quinolone resistance are mutations of a specific serine or acidic residue in the A subunit of gyrase or topoisomerase IV. These amino acids are proposed to serve as a critical enzyme-quinolone interaction site by anchoring a water-metal ion bridge that coordinates drug binding. To probe the role of the proposed water-metal ion bridge, we characterized wild-type, GrlA(E85K), GrlA(S81F/E85K), GrlA(E85A), GrlA(S81F/E85A) and GrlA(S81F) Bacillus anthracis topoisomerase IV, their sensitivity to quinolones and related drugs and their use of metal ions. Mutations increased the Mg2+ concentration required to produce maximal quinolone-induced DNA cleavage and restricted the divalent metal ions that could support quinolone activity. Individual mutation of Ser81 or Glu85 partially disrupted bridge function, whereas simultaneous mutation of both residues abrogated protein-quinolone interactions. Results provide functional evidence for the existence of the water-metal ion bridge, confirm that the serine and glutamic acid residues anchor the bridge, demonstrate that the bridge is the primary conduit for interactions between clinically relevant quinolones and topoisomerase IV and provide a likely mechanism for the most common causes of quinolone resistance.
机译:尽管喹诺酮类药物是最常用的抗菌药物,但耐药性的日益普及威胁到它们的使用。喹诺酮耐药性的最常见原因是回旋酶或拓扑异构酶IV的A亚基中特定丝氨酸或酸性残基的突变。这些氨基酸被提议通过锚定协调药物结合的水-金属离子桥来充当关键的酶-喹诺酮相互作用位点。为了探究拟议的水金属离子桥的作用,我们鉴定了野生型炭疽芽孢杆菌拓扑异构酶GrlA(E85K),GrlA(S81F / E85K),GrlA(E85A),GrlA(S81F / E85A)和GrlA(S81F) IV,它们对喹诺酮类药物和相关药物的敏感性及其对金属离子的使用。突变增加了产生最大喹诺酮诱导的DNA裂解所需的Mg2 +浓度,并限制了可以支持喹诺酮活性的二价金属离子。 Ser81或Glu85的单个突变部分破坏了桥功能,而两个残基的同时突变则废除了蛋白-喹诺酮的相互作用。结果为水-金属离子桥的存在提供了功能证据,证实了丝氨酸和谷氨酸残基锚定了桥,证明了桥是临床上相关喹诺酮与拓扑异构酶IV之间相互作用的主要管道,并提供了可能的机制。引起喹诺酮耐药的最常见原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号