...
首页> 外文期刊>ACS Chemical Biology >Reaction Mechanism of N?Acetylneuraminic Acid Lyase Revealed by a Combination of Crystallography,QM/MM Simulation,and Mutagenesis
【24h】

Reaction Mechanism of N?Acetylneuraminic Acid Lyase Revealed by a Combination of Crystallography,QM/MM Simulation,and Mutagenesis

机译:结晶学,QM / MM模拟和诱变相结合揭示N?乙酰神经氨酸裂解酶的反应机理

获取原文
获取原文并翻译 | 示例

摘要

N-Acetylneuraminic acid lyase (NAL) is a Class I aldolase that catalyzes the reversible condensation of pyruvate with N-acetyl-D-mannosamine (ManNAc) to yield the sialic acid Nacetylneuraminic acid (Neu5Ac).Aldolases are finding increasing use as biocatalysts for the stereospecific synthesis of complex molecules.Incomplete understanding of the mechanism of catalysis in aldolases, however, can hamper development of new enzyme activities and specificities, including control over newly generated stereocenters.In the case of NAL, it is clear that the enzyme catalyzes a Bi-Uni ordered condensation reaction in which pyruvate binds first to the enzyme to form a catalytically important Schiff base.The identity of the residues required for catalysis of the condensation step and the nature of the transition state for this reaction, however, have been a matter of conjecture.In order to address, this we crystallized a Y137A variant of the E.coli NAL in the presence of Neu5Ac.The three-dimensional structure shows a full length sialic acid bound in the active site of subunits A, B, and D, while in subunit C, discontinuous electron density reveals the positions of enzyme-bound pyruvate and ManNAc.These'snapshot'structures, representative of intermediates in the enzyme catalytic cycle, provided an ideal starting point for QM/MM modeling of the enzymic reaction of carbon-carbon bond formation.This revealed that Tyr137 acts as the proton donor to the aldehyde oxygen of ManNAc during the reaction, the activation barrier is dominated by carbon-carbon bond formation, and proton transfer from Tyr137 is required to obtain a stable Neu5Ac-Lys165 Schiff base complex.The results also suggested that a triad of residues, Tyr137, Ser47, and Tyr110 from a neighboring subunit, are required to correctly position Tyr137 for its function, and this was confirmed by site-directed mutagenesis.This understanding of the mechanism and geometry of the transition states along the C-C bond-forming pathway will allow further development of these enzymes for stereospecific synthesis of new enzyme products.
机译:N-乙酰神经氨酸裂解酶(NAL)是I类醛缩酶,可催化丙酮酸与N-乙酰基-D-甘露糖胺(ManNAc)的可逆缩合反应产生唾液酸N-乙酰神经氨酸(Neu5Ac)。醛缩酶作为生物催化剂的用途日益广泛然而,对醛缩酶催化机理的不完全了解可能会阻碍新酶活性和特异性的发展,包括对新生成的立体中心的控制。在NAL的情况下,很明显该酶催化酶的活性和特异性。 Bi-Uni有序的缩合反应,其中丙酮酸首先与酶结合形成催化上重要的席夫碱。然而,催化缩合步骤所需的残基的身份以及该反应的过渡态性质一直是一个为了解决这个问题,我们在存在Neu5Ac的情况下结晶了大肠杆菌NAL的Y137A变体。结构显示全长唾液酸结合在亚基A,B和D的活性位点上,而在亚基C中,不连续的电子密度揭示了酶结合丙酮酸和ManNAc的位置。这些``快照''结构代表了中间体的中间体酶催化循环为碳-碳键形成酶反应的QM / MM模拟提供了理想的起点。这表明Tyr137在反应过程中是ManNAc醛氧的质子供体,活化屏障占主导地位通过碳-碳键的形成,需要从Tyr137转移质子才能获得稳定的Neu5Ac-Lys165 Schiff碱配合物。结果还表明,需要三联残基来自相邻亚基的Tyr137,Ser47和Tyr110正确定位诱变证实了Tyr137的功能。对CC形成途径wi过渡态的机理和几何构型的了解将允许进一​​步开发这些酶用于新酶产物的立体定向合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号