首页> 美国卫生研究院文献>ACS AuthorChoice >Reaction Mechanism of N-Acetylneuraminic Acid Lyase Revealed by a Combination of Crystallography QM/MM Simulation and Mutagenesis
【2h】

Reaction Mechanism of N-Acetylneuraminic Acid Lyase Revealed by a Combination of Crystallography QM/MM Simulation and Mutagenesis

机译:结晶学QM / MM模拟和诱变相结合揭示N-乙酰神经氨酸裂解酶的反应机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

N-Acetylneuraminic acid lyase (NAL) is a Class I aldolase that catalyzes the reversible condensation of pyruvate with N-acetyl-d-mannosamine (ManNAc) to yield the sialic acid N-acetylneuraminic acid (Neu5Ac). Aldolases are finding increasing use as biocatalysts for the stereospecific synthesis of complex molecules. Incomplete understanding of the mechanism of catalysis in aldolases, however, can hamper development of new enzyme activities and specificities, including control over newly generated stereocenters. In the case of NAL, it is clear that the enzyme catalyzes a Bi-Uni ordered condensation reaction in which pyruvate binds first to the enzyme to form a catalytically important Schiff base. The identity of the residues required for catalysis of the condensation step and the nature of the transition state for this reaction, however, have been a matter of conjecture. In order to address, this we crystallized a Y137A variant of the E. coli NAL in the presence of Neu5Ac. The three-dimensional structure shows a full length sialic acid bound in the active site of subunits A, B, and D, while in subunit C, discontinuous electron density reveals the positions of enzyme-boundpyruvate and ManNAc. These ‘snapshot’ structures, representativeof intermediates in the enzyme catalytic cycle, provided an idealstarting point for QM/MM modeling of the enzymic reaction of carbon–carbonbond formation. This revealed that Tyr137 acts as the proton donorto the aldehyde oxygen of ManNAc during the reaction, the activationbarrier is dominated by carbon–carbon bond formation, and protontransfer from Tyr137 is required to obtain a stable Neu5Ac-Lys165Schiff base complex. The results also suggested that a triad of residues,Tyr137, Ser47, and Tyr110 from a neighboring subunit, are requiredto correctly position Tyr137 for its function, and this was confirmedby site-directed mutagenesis. This understanding of the mechanismand geometry of the transition states along the C–C bond-formingpathway will allow further development of these enzymes for stereospecificsynthesis of new enzyme products.
机译:N-乙酰神经氨酸裂解酶(NAL)是I类醛缩酶,可催化丙酮酸与N-乙酰-d-甘露糖胺(ManNAc)的可逆缩合,产生唾液酸N-乙酰神经氨酸(Neu5Ac)。醛缩酶被发现越来越多地用作复杂分子的立体有择合成的生物催化剂。然而,对醛缩酶催化机理的不完全了解会阻碍新酶活性和特异性的发展,包括对新生成的立体中心的控制。在NAL的情况下,很明显该酶催化Bi-Uni有序缩合反应,其中丙酮酸首先与酶结合形成重要的催化希夫碱。然而,催化缩合步骤所需的残基的身份以及该反应的过渡态的性质一直是一个推测。为了解决这个问题,我们在存在Neu5Ac的情况下结晶了大肠杆菌NAL的Y137A变体。三维结构显示全长唾液酸结合在亚基A,B和D的活性位点上,而在亚基C中,不连续的电子密度揭示了酶结合的位置丙酮酸和ManNAc。这些“快照”结构代表酶催化循环中的中间体提供了理想的碳-碳酶促反应的QM / MM建模的起点键的形成。这表明Tyr137充当质子供体反应过程中对ManNAc的醛氧的活化障碍主要由碳-碳键的形成和质子决定需要从Tyr137转移以获得稳定的Neu5Ac-Lys165希夫碱复合物。结果还表明存在三联残基,需要来自相邻亚基的Tyr137,Ser47和Tyr110正确定位Tyr137的功能,这一点已得到确认通过定点诱变。对机制的了解碳键形成的过渡态的几何构型途径将进一步发展这些酶的立体定向合成新的酶产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号