首页> 外文期刊>電子情報通信学会技術研究報告. ニュ-ロコンピュ-ティング. Neurocomputing >Selection and Re-learning of learning data based on quantization of weights in multi-layered neural networks
【24h】

Selection and Re-learning of learning data based on quantization of weights in multi-layered neural networks

机译:基于多层神经网络的权重量化的学习数据的选择与重新学习

获取原文
获取原文并翻译 | 示例

摘要

In this report, methods for selection, re-learning of learning data, and structurization of multilayered neural networks(NNs) based on the quantization procedure of weights in NNs are newly propoed. Here an idea concerning with the balance between the size of the learning data and the size of a NN is introduced. In the proposed learning algorithm, by using the following procedures; (i)the reduction of the number of the quantization bits and (ii)the limitation of the learning data by the quantization processing, the structurization of NNs can be realized. Finally, we apply the proposed learning algorithm for classfication problems and show its structurization and task-decomposition abilities concretely.
机译:在本报告中,基于NNS中的权重的量化过程,选择,重新学习学习数据的选择,重新学习学习数据和结构化的结构,是新推进的。 这里引入了关于学习数据的大小与NN的尺寸之间的概念的想法。 在提出的学习算法中,通过使用以下过程; (i)减少量化比特的数量和(ii)通过量化处理的学习数据的限制,可以实现NNS的结构化。 最后,我们将建议的学习算法应用于分类问题,具体地显示其结构化和任务分解能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号