...
首页> 外文期刊>Biotechnology and Bioengineering >Re-structuring protein crystals porosity for biotemplating by chemical modification of lysine residues
【24h】

Re-structuring protein crystals porosity for biotemplating by chemical modification of lysine residues

机译:通过赖氨酸残基的化学修饰来重组蛋白质晶体的孔隙度,以进行生物模板化

获取原文
获取原文并翻译 | 示例
           

摘要

Protein crystals are routinely prepared for the elucidation of protein structure by X-ray crystallography. These crystals present an highly accurate periodical array of protein molecules with accompanying highly ordered porosity made of interconnected voids. The permeability of the porous protein crystals to a wide range of solutes has recently triggered attempts to explore their potential application as biotemplates by a controlled "filling" process for the fabrication of novel, nano-structured composite materials. Gaining control of the porosity of a given protein crystal may lead to the preparation of a series of "biotemplates" enabling different 'filler'/protein content ratios, resulting in different nanostructured composites. One way to gain such control is to produce a series of polymorphic forms of a given "parent-protein" crystal. As protein packing throughout crystallization is primarily dominated by the chemical composition of the surface of protein molecules and its impact on protein-protein interactions, modification of residues exposed on the surface will affect protein packing, leading to modified porosity. Here we propose to provide influence on the porosity of protein crystals for biotemplating by pre-crystallization chemical modification of lysine residues exposed on protein's surface. The feasibility of this approach was demonstrated by the serial application of chemical "modifiers" leading to protein derivatives exhibiting altered porosity by affecting protein "packing" throughout protein crystallization. Screening of a series of modifying agents for lysine modification of hen egg white lysozyme revealed that pre-crystallization modification preserving their positive charge did not affect crystal porosity, while modification resulting in their conversion to negatively charged groups induced dramatic change in protein crystal's packing and porosity. Furthermore, we demonstrate that chemical modification of lysine residues affecting modified protein packing may be simultaneously performed with the crystallization process: aldehydes generating Schiff base formation with protein's lysine residues readily affected modified protein packing, resulting in altered porosity. Our results demonstrate the feasibility of the use of site directed chemical modifications for the generation of a series of protein crystal exhibiting different porosities for biotemplating, all derived from one "parent" protein.
机译:常规制备蛋白质晶体,以通过X射线晶体学阐明蛋白质结构。这些晶体呈现出高度精确的蛋白质分子周期性阵列,并伴随着由相互连接的空隙构成的高度有序的孔隙率。多孔蛋白晶体对各种溶质的渗透性最近触发了尝试,通过控制“填充”工艺来制造新型纳米结构复合材料,以探索其作为生物模板的潜在应用。控制给定蛋白质晶体的孔隙率可能会导致制备一系列“生物模板”,从而实现不同的“填充剂” /蛋白质含量比,从而产生不同的纳米结构复合材料。获得这种控制的一种方法是产生给定“母体蛋白质”晶体的一系列多态形式。由于整个结晶过程中的蛋白质堆积主要由蛋白质分子表面的化学组成及其对蛋白质-蛋白质相互作用的影响所决定,因此暴露在表面上的残基的修饰将影响蛋白质堆积,从而导致孔隙率的改变。在这里,我们提议通过对暴露于蛋白质表面的赖氨酸残基进行预结晶化学修饰,为生物模板化提供蛋白质晶体孔隙率的影响。这种方法的可行性通过化学“修饰剂”的连续应用得到证明,该修饰剂通过影响整个蛋白质结晶过程中的蛋白质“堆积”而导致蛋白质衍生物表现出改变的孔隙率。筛选用于蛋清溶菌酶赖氨酸修饰的一系列修饰剂后发现,保留其正电荷的预结晶修饰不会影响晶体的孔隙率,而修饰导致它们转化为带负电荷的基团会导致蛋白质晶体堆积和孔隙率发生巨大变化。 。此外,我们证明,影响修饰的蛋白质堆积的赖氨酸残基的化学修饰可以与结晶过程同时进行:与蛋白质的赖氨酸残基产生席夫碱形成的醛容易影响修饰的蛋白质堆积,从而导致孔隙率改变。我们的结果证明了使用定点化学修饰产生一系列显示出不同孔隙度的生物模板蛋白晶体的可行性,这些蛋白晶体均来自一个“亲本”蛋白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号