首页> 外文期刊>Journal of synchrotron radiation >Characterization of the surface contamination of deep X-ray lithography mirrors exposed to synchrotron radiation
【24h】

Characterization of the surface contamination of deep X-ray lithography mirrors exposed to synchrotron radiation

机译:暴露于同步辐射的深X射线光刻镜表面污染的表征

获取原文
获取原文并翻译 | 示例
       

摘要

In deep X-ray lithography (DXRL), synchrotron radiation is applied to pattern polymer microstructures. At the Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source, a chromium-coated grazingincidence X-ray double-mirror system is applied as a tunable low-pass filter. In a systematic study, the surface conditions of the two mirrors are analyzed to determine the mirror reflectivity for DXRL process optimization, without the need for spectral analysis or surface probing: PMMA resist foils were homogeneously exposed and developed to determine development rates for mirror angles between 6 mrad and 12 mrad as well as for white light in the absence of the mirrors. Development rates cover almost five orders of magnitude for nominal exposure dose (deposited energy per volume) values of 1 kJ cm~(-3) to 6 kJ cm~(-3). The rates vary from case to case, indicating that the actual mirror reflectivity deviates from that of clean chromium assumed for the experiments. Fitting the mirror-based development rates to the white-light case as a reference, reflectivity correction factors are identified, and verified by experimental and numerical results of beam calorimetry. The correction factors are related to possible combinations of a varied chromium density, chromium oxidation and a carbon contamination layer. The best fit for all angles is obtained assuming 7.19 g cm~(-3) nominal chromium density, 0.5 nm roughness for all involved layers, and an oxide layer thickness of 25 nm with a carbon top coat of 50 nm to 100 nm. A simulation tool for DXRL exposure parameters was developed to verify that the development rates for all cases do coincide within a small error margin (achieving a reduction of the observed errors by more than two orders of magnitude) if the identified mirror surface conditions are considered when calculating the exposure dose.
机译:在深X射线光刻(DXRL)中,同步辐射施加到图案聚合物微结构。在微型和纳米器件(Sylmand)的同步rotron实验室,加拿大光源,镀铬的涂覆X射线双镜系统用作可调谐的低通滤波器。在一个系统的研究中,分析了两个镜子的表面状况以确定DXR1工艺优化的镜像反射率,而无需光谱分析或表面探测:PMMA抗蚀剂箔均匀暴露并开发以确定镜子角度之间的开发速率6 MRAD和12个MRAD以及镜子没有镜子的白光。开发率涵盖近五个数量级,用于标称暴露剂量(每体积沉积能量)值1kJ cm〜(-3)至6kJ cm〜(-3)。速率因案例而有所不同,表明实际镜子反射率偏离假设实验的清洁铬的反射率。将基于镜子的显影率拟合到白灯壳体中作为参考,确定反射率校正因子,并通过光束量热法的实验和数值结果来验证。校正因子与各种铬密度,铬氧化和碳污染层的可能组合有关。假设7.19g cm〜(-3)标称铬密度,对所有涉及的层的粗糙度为0.5nm粗糙度,以及氧化物层厚度为25nm至100nm的氧化物层厚度。开发了一种用于DXRL曝光参数的仿真工具,以验证所有情况的开发率是否在小错误边缘内重合(通过识别的镜面条件被认为是何时考虑所识别的镜面条件计算曝光剂量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号