首页> 外文期刊>Journal of Micromechanics and Microengineering >Laser-bulge based ultrasonic bonding method for fabricating multilayer thermoplastic microfluidic devices
【24h】

Laser-bulge based ultrasonic bonding method for fabricating multilayer thermoplastic microfluidic devices

机译:基于激光凸出的超声波粘接方法,用于制造多层热塑性微流体装置

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrasonic bonding is a commonly-used method for fabrication of thermoplastic microfluidic devices. However, due to the existence of the energy director (a convex structure to concentrate the ultrasonic energy), it is difficult to control its molten polymer flow, which may result in a small gap between the bonding interface or microchannel clogging. In this paper, we present an approach to address these issues. Firstly, the microchannels were patterned onto the PMMA sheets using hot embossing with the wire electrical discharge machined molds. Then, a small bulge, which was formed at the edge of the laser-ablated groove (LG), was generated around the microchannel using a CO2 laser ablation system. By using the bulge to concentrate the ultrasonic energy, there was no need for fabricating the complicated and customized energy director. When the bulge was melted, it was able to flow into the LG which overcame the 'gap' and 'clogging' problems. Here, two types of two-layer microfluidic devices and a five-layer micromixer were fabricated to validate its performance. Our results showed that these thermoplastic microdevices can be successfully bonded by using this method. The liquid leakage was not observed in both the capillary-driven flowing test and the pressure-driven mixing experiments. It is a potential method for bonding the thermoplastic microfluidic devices.
机译:超声波键合是一种用于制备热塑性微流体装置的共同使用的方法。然而,由于能量导向器(凸形结构集中超声能量),难以控制其熔融聚合物流动,这可能导致粘合界面或微通道堵塞之间的小间隙。在本文中,我们提出了一种解决这些问题的方法。首先,使用带有电线放电加工模具的热压花将微通道图案化到PMMA板上。然后,使用CO 2激光烧蚀系统在微通道周围产生在激光烧蚀凹槽(LG)的边缘处形成的小凸起。通过使用凸起来集中超声能量,不需要制造复杂和定制的能源导演。当凸起融化时,它能够流入LG,克服“差距”和“堵塞”问题。这里,制造两种类型的两层微流体装置和五层微混合物以验证其性能。我们的结果表明,这些热塑性微生物可以通过使用该方法成功粘合。在毛细管驱动的流动测试和压力驱动的混合实验中,未观察到液体泄漏。它是粘合热塑性微流体装置的潜在方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号