...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Excellent high temperature field emission behavior with an ultra-low turn-on field and reliable current emission stability from SiC@SiO2@graphene nanoarray emitters
【24h】

Excellent high temperature field emission behavior with an ultra-low turn-on field and reliable current emission stability from SiC@SiO2@graphene nanoarray emitters

机译:优异的高温场排放行为,具有超低开启场,SiC @ SiO2的可靠电流排放稳定性@ Graphene Nanoarray发射器

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, in order to obtain a promising material, SiC@ SiO2@graphene nanoarrays with numerous flake-like graphene coatings have been prepared on a Si substrate through a simple chemical vapordeposition (CVD) approach. The fieldemission (FE) measurements show that the turn-on field (E-to) of the as-synthesized SiC@ SiO2@graphene nanoarrays is decreased dramatically from 1.75 V mu m(-1) to 0.73 V mu m(-1) when temperature is increased from room temperature (RT) to 500 degrees C, which is superior to most SiC one-dimensional (1D) nanomaterials. The current fluctuation of the emitters at RT and 200 degrees C is approximately +/- 1.3% and +/- 1.7%, respectively, suggesting remarkable emission efficiency and stability of the sample. The excellent FE behavior is mainly attributed to the distinctly increased number of electron emission sites and the Fermi level (E-f) adjustment caused by the multilayer heterostructure as well as the increased temperatures. Based on the structural components of the nanoarrays, a reasonable ''Stripping Reconstruction'' mechanism model has been first established. It is believed that not only can the as-synthesized SiC@SiO2@ graphene nanoarrays be utilised as promising emitters under high temperatures, but also the proposed mechanism model and the multilayer decoration strategy are valuable for the FE enhancement of other 1D nanomaterials.
机译:在本作工作中,为了获得有希望的材料,通过简单的化学试验(CVD)方法在Si衬底上制备具有许多薄片状石墨烯涂层的SiC @ SiO 2 @石墨烯纳米阵列。现场病(Fe)测量表明,由1.75 V mu m(-1)至0.73 V mu m(-1),如175 V mu m(-1),如综合SiC @ SiO 2的开启场(E-To)显着降低至0.73Vμm(-1)当温度从室温(RT)增加至500℃时,其优于大多数SiC一维(1D)纳米材料。 RT和200摄氏度的发射器的电流波动分别约为+/- 1.3%和+/- 1.7%,表明样品的显着发射效率和稳定性。优异的Fe行为主要归因于由多层异质结构和增加的温度引起的电子发射位点和费米水平(E-F)调节的明显增加。基于纳米阵列的结构部件,首先建立了合理的“汽提重建”机制模型。据信,不仅可以在高温下用作有前途的发射器的AS合成的SiC @ SiC 2,而且还可以使用所提出的机构模型和多层装饰策略对其他1D纳米材料的Fe增强有价值。

著录项

  • 来源
  • 作者单位

    Qingdao Univ Sci &

    Technol Coll SinoGerman Sci &

    Technol Qingdao 266061 Peoples R China;

    Qingdao Univ Sci &

    Technol Coll SinoGerman Sci &

    Technol Qingdao 266061 Peoples R China;

    Qingdao Univ Sci &

    Technol Sch Electromech Engn Qingdao 266061 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Sch Chem &

    Mol Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Sch Electromech Engn Qingdao 266061 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Sch Electromech Engn Qingdao 266061 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Sch Chem &

    Mol Engn Qingdao 266042 Shandong Peoples R China;

    Qingdao Univ Sci &

    Technol Coll SinoGerman Sci &

    Technol Qingdao 266061 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号