首页> 外文期刊>Journal of Mechanisms and Robotics: Transactions of the ASME >Selective-Compliance-Based Lagrange Model and Multilevel Noncollocated Feedback Control of a Humanoid Robot
【24h】

Selective-Compliance-Based Lagrange Model and Multilevel Noncollocated Feedback Control of a Humanoid Robot

机译:基于选择性的合规性拉格朗日模型和人形机器人的多级非统计反馈控制

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents unified control schemes for compliant humanoid robots that are aimed at ensuring successful execution of both balancing tasks and walking trajectories for this class of bipeds, given the complexity of under-actuation. A set of controllers corresponding to the single-support (SS) and double-support (DS) walking phases has been designed based on the flexible sagittal joint dynamics of the system, accounting for both the motor and link states. The first controller uses partial state feedback (proportional-derivative-derivative (PDD)), whereas the second considers the full state of the robot (proportional-proportional-derivative-derivative (PPDD)), while both are mathematically proven to stabilize the closed-loop systems for regulation and trajectory tracking tasks. It is demonstrated mathematically that the PDD controller possesses better stability properties than the PPDD scheme for regulation tasks, even though the latter has the advantage of allowing for its associated gain-set to be generated by means of standard techniques, such as linear quadratic regulator (LQR) control. A switching condition relating the center-of-pressure (CoP) to the energy functions corresponding to the DS and SS models has also been established. The theoretical results are corroborated by means of balancing and walking experiments using the COmpliant huMANoid (COMAN), while a practical comparison between the designed controller and a classical PD controller for compliant robots has also been performed. Overall, and a key conclusion of this paper, the PPDD scheme has produced a significantly improved trajectory tracking performance, with 9%, 15%, and 20% lower joint space error for the hip, knee, and ankle, respectively.
机译:本文介绍了符合人类机器人的统一控制方案,该方案旨在确保为持动不足的复杂性而确保为这类Biped的平衡任务和行走轨迹的成功执行。基于系统的柔性矢状接头动态设计了一组对应于单支持(SS)和双支持(DS)步行阶段的控制器,占电机和链路状态的核对。第一控制器使用部分状态反馈(比例 - 导数 - 导数(PDD)),而第二个控制器,而第二个控制器(比例 - 比例 - 导数 - 导数(PPDD)),而两者都被数学证明以稳定关闭 - 用于调节和轨迹跟踪任务的系统。在数学上展示PDD控制器比PPDD方案具有比调节任务的PPDD方案具有更好的稳定性,即使后者具有允许通过标准技术(例如线性二次调节器)产生相关的增益集的优点LQR)控制。还建立了与DS和SS模型对应的压力中心(COP)相关的切换条件。通过使用符合人体ovic(COMAN)的平衡和行走实验来证实理论结果,而设计的控制器与兼容机器人的经典PD控制器之间的实际比较也是如此。总体而言,本文的一个关键结论,PPDD方案分别产生了显着改善的轨迹跟踪性能,分别为臀部,膝盖和踝关节的9%,15%和20%较低的接头空间误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号