首页> 外文期刊>Journal of Electrochemical Energy Conversion and Storage >Study on Nonlinear Identification SOFC Temperature Model Based on Particle Swarm Optimization-Least-Squares Support Vector Regression
【24h】

Study on Nonlinear Identification SOFC Temperature Model Based on Particle Swarm Optimization-Least-Squares Support Vector Regression

机译:基于粒子群优化 - 最小二乘支持向量回归的非线性识别SOFC温度模型研究

获取原文
获取原文并翻译 | 示例

摘要

In order to facilitate valid solid oxide fuel cell (SOFC) temperature control scheme, a nonlinear identification method of SOFC temperature dynamic behaviors is proposed using an autoregressive network with exogenous inputs (NARX) model, whose nonlinear function is described by a least-squares support vector regression (LSSVR) method with radial basis kernel function (RBF). During the identifying process, a particle swarm optimization (PSO) algorithm is introduced to optimize the parameters of LSSVR. On the other hand, a mechanism model is developed to sample the training data to regress the NARX model. Investigations are conducted to analyze the effects of training data size and PSO fitness function on the accuracy of the NARX model. The results demonstrate that the NARX model with tenfold cross-validation fitness function and large size data is precise enough in predicting the SOFC temperature dynamic behaviors. The maximum errors of cathode and anode outlet temperature are 0.3081 K and 0.3293 K, respectively. Furthermore, the simulation speed of NARX model is much faster than the mechanism model because NARX model avoids the internal complex computation process. The training time of the NARX model with large size data is about 1.2 s. For a 20,000 s simulation, the predicting time of the NARX model is about 0.2 s, while the mechanism model is about 36s. In consideration of its high computational speed and accuracy, NARX model is a powerful candidate for valid multivariable model predictive control (MPC) schemes.
机译:为了促进有效的固体氧化物燃料电池(SOFC)温度控制方案,使用具有外源输入(NARX)模型的自回归网络来提出了SOFC温度动态行为的非线性识别方法,其非线性函数由最小二乘支撑描述传染媒介回归(LSSVR)方法具有径向基础内核功能(RBF)。在识别过程中,引入了粒子群优化(PSO)算法以优化LSSVR的参数。另一方面,开发了一种机制模型来对训练数据进行采样以退回NARX模型。进行调查以分析训练数据尺寸和PSO健身功能对鼻梁模型的准确性的影响。结果表明,具有十倍交叉验证健身功能和大尺寸数据的NARX模型在预测SOFC温度动态行为方面是足够的。阴极和阳极出口温度的最大误差分别为0.3081k和0.3293k。此外,NARX模型的仿真速度比机制模型快得多,因为NARX模型避免了内部复杂计算过程。具有大尺寸数据的NARX模型的训练时间约为1.2秒。对于20,000秒的模拟,NARX模型的预测时间约为0.2秒,而机制模型约为36s。考虑到其高计算速度和准确性,NARX模型是有效的多变量模型预测控制(MPC)方案的强大候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号