【24h】

Shape Aware Quadrature

机译:形状感知正交

获取原文
获取原文并翻译 | 示例

摘要

With Shape Aware Quadratures (SAQ), for a given set of quadrature nodes, order, and domain of integration, the quadrature weights are obtained by solving a system of suitable moment fitting equations in least square sense. The moments in the moment equations are approximated over a simplified domain (Omega(0)) that is a reasonable approximation of the original domain (Omega) that are then corrected for the deviation of the shape of Omega(0) from Omega via shape correction factors. This idea was already successfully utilized in the Adaptively Weighted Numerical Integration (AW) method [1 3], where moments were computed over simplified but homeomorphic domain and then corrected using first-order shape sensitivity, allowing efficient and accurate integration of integrable functions over arbitrary domains.
机译:对于形状感知四轮节(SAQ),对于给定的一组正交节点,顺序和集成域,通过求解一个合适的力矩拟合方程,最小二乘意义的系统获得正交重量。 瞬间方程中的瞬间近似于简化域(OMEGA(0)),该域是原始域(OMEGA)的合理近似,然后校正通过形状校正的ω(0)形状的偏差 因素。 该想法已经成功地利用了自适应加权的数字积分(AW)方法[1 3],其中瞬间通过简化但同形域计算,然后使用一流的形状灵敏度校正,允许高效准确地整合可任意的可积分功能 域名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号