...
首页> 外文期刊>Journal of Bioscience and Bioengineering >Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis
【24h】

Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis

机译:基于自适应实验室演化和转录组分析,提高酿酒酵母酿酒酵母甘油同化能力的代谢工程靶标

获取原文
获取原文并翻译 | 示例
           

摘要

Glycerol, a by-product of biodiesel production, has been utilized as a raw material for bioproduction. Saccharomyces cerevisiae, which has been used as a host microorganism for bioproduction, possesses the metabolic pathways for glycerol assimilation, but it cannot grow on glycerol as a carbon source. In this study, we identified metabolic engineering targets to improve the glycerol assimilation ability of S. cerevisiae based on adaptive laboratory evolution experiments using serial transfer of culture on glycerol and transcriptome analysis of the evolved cells using RNA sequencing. The transcriptome data revealed that the upregulation of genes related to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation contributed to the increased specific growth rate on glycerol during adaptive evolution. Furthermore, genes related to the pentose phosphate pathway were downregulated. Based on these observations, we identified metabolic engineering targets for improving glycerol assimilation. Overexpression of HAP4, which encodes one of the subunits of the Hap2p/3p/4p/5p transcription factor complex involved in the upregulation of the TCA cycle genes, or disruption of RIM15, which encodes a protein kinase related to the transcription regulator Gis1p, as well as overexpression of STL1, which encodes the glycerol/H+ symporter, improved the growth of S. cerevisiae on glycerol as the main carbon source. Our results indicate that the engineering targets can be identified based on adaptive laboratory evolution and transcriptome analysis of the evolved cells, and that the glycerol assimilation ability of S. cerevisiae is indeed improved by engineering the identified targets. (C) 2019, The Society for Biotechnology, Japan. All rights reserved.
机译:甘油,生物柴油生产的副产物已被用作生物生产的原料。已被用作生物生产的宿主微生物的酿酒酵母具有用于甘油同化的代谢途径,但不能在甘油中生长作为碳源。在这项研究中,我们确定了基于使用RNA测序的甘油的连续转移和使用RNA测序的进化细胞的甘油和转录组分析的适应性实验室演化实验来改善S.酿酒酵母的代谢工程靶标。转录组数据显示,与三羧酸(TCA)循环和氧化磷酸化相关的基因的上调导致自适应进化期间甘油上增加的甘油的比较增加。此外,下调与戊糖磷酸途径有关的基因。基于这些观察结果,我们确定了改善甘油同化的代谢工程靶标。 HAP4的过度表达,其编码HAP2P / 3P / 4P / 5P转录因子复合体中的一个亚基,涉及TCA循环基因的上调或RIM15的破坏,其编码与转录调节器GIS1P相关的蛋白激酶,如以及编码甘油/ h +次态甘油/ H +次态的STL1的过度表达,改善了甘油在甘油中的酿酒酵母的生长作为主要碳源。我们的结果表明,工程目标可以基于进化细胞的自适应实验室演化和转录组分析来鉴定,并且通过工程来改善S.Cerevisiae的甘油同化能力确实改善了所识别的目标。 (c)2019年,日本生物技术协会。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号