首页> 外文期刊>JETP Letters >Parametric instability of oscillations of a vortex ring in a z-periodic Bose condensate and return to the initial state
【24h】

Parametric instability of oscillations of a vortex ring in a z-periodic Bose condensate and return to the initial state

机译:Z-周期培养凝结物中涡旋环的振动振荡的参数不稳定性并返回初始状态

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The dynamics of deformations of a quantum vortex ring in a Bose condensate with the periodic equilibrium density rho(z) = 1 - I mu cos z has been considered in the local induction approximation. Parametric instabilities of normal modes with the azimuthal numbers +/- m at the energy integral E near the values , where p is the order of resonance, have been revealed. Numerical experiments have shown that the amplitude of unstable modes with m = 2 and p = 1 can sharply increase already at I mu 0.03 to values about unity. Then, after several fast oscillations, fast return to a weakly perturbed state occurs. Such a behavior corresponds to the integrable Hamiltonian H ae sigma(E (2) ((1)) - E)(|b (+)|(2) + |b (-)|(2))-I mu(b (+) b (-) + b (+)*b (-)*)+u(|b (+)|(4) + |b (-)|(4))+w|b (+)|(2)|b (-)|(2) for two complex envelopes b (+/-)(t). The results have been compared to parametric instabilities of the vortex ring in the condensate with the density rho(z, r) = 1 - r (2) - alpha z (2), which occur at alpha ae 8/5 and 16/7.
机译:在局部诱导近似中考虑了具有周期性平衡密度Rho(Z)= 1-iμSCSZ的瓶子凝结物中量子涡旋环的变形动态。透露,在靠近值的能量积分e +/- m的正常模式的参数范围+/-m,其中p是谐振顺序。数值实验表明,具有M = 2和P = 1的不稳定模式的幅度可以在0.03到统一的值下急剧增加。然后,经过几个快速振荡,发生快速返回到弱扰动状态。这种行为对应于可集成的Hamilton H Ae Sigma(E(2)((1)) - e)(| B(+)|(2)+ | B( - )|(2)) - I Mu(B (+)B( - )+ B(+)* B( - )*)+ U(| B(+)|(4)+ |(4)|(4))+ W | B(+)| (2)| B( - )|( - )|(2)两个复杂的信封B(+/-)(t)。将结果与浓缩物中的涡旋环的参数稳定性进行了比较,密度rhO(z,r)= 1 - r(2) - αz(2),其在alpha ae 8/5和16/7处发生。

著录项

  • 来源
    《JETP Letters》 |2017年第4期|共6页
  • 作者

    Ruban V. P.;

  • 作者单位

    Russian Acad Sci Landau Inst Theoret Phys Chernogolovka 142432 Moscow Region Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号