...
首页> 外文期刊>Human Molecular Genetics >Structural analysis of X-linked retinoschisis mutations reveals distinct classes which differentially effect retinoschisin function
【24h】

Structural analysis of X-linked retinoschisis mutations reveals distinct classes which differentially effect retinoschisin function

机译:X型视网膜突变突变的结构分析显示出差异效应视黄硅蛋白功能的不同类别

获取原文
获取原文并翻译 | 示例

摘要

Retinoschisin, an octameric retinal-specific protein, is essential for retinal architecture with mutations causing X-linked retinoschisis (XLRS), a monogenic form of macular degeneration. Most XLRS-associated mutations cause intracellular retention, however a subset are secreted as octamers and the cause of their pathology is ill-defined. Therefore, here we investigated the solution structure of the retinoschisin monomer and the impact of two XLRS-causing mutants using a combinatorial approach of biophysics and cryo-EM. The retinoschisin monomer has an elongated structure which persists in the octameric assembly. Retinoschisin forms a dimer of octamers with each octameric ring adopting a planar propeller structure. Comparison of the octamer with the hexadecamer structure indicated little conformational change in the retinoschisin octamer upon dimerization, suggesting that the octamer provides a stable interface for the construction of the hexadecamer. The H207Q XLRS-associated mutation was found in the interface between octamers and destabilized both monomeric and octameric retinoschisin. Octamer dimerization is consistent with the adhesive function of retinoschisin supporting interactions between retinal cell layers, so disassembly would prevent structural coupling between opposing membranes. In contrast, cryo-EM structural analysis of the R141H mutation at ~4.2? resolution was found to only cause a subtle conformational change in the propeller tips, potentially perturbing an interaction site. Together, these findings support distinct mechanisms of pathology for two classes of XLRS-associated mutations in the retinoschisin assembly.
机译:Retinoschisin,一种八大半视网膜特异性蛋白质,对于导致X型视网膜(XLR)的突变,一种单一形式的黄斑变性的视网膜架构是必不可少的。大多数XLRS相关突变导致细胞内保留,但是一个子集被分泌为八羟寡,其病理学的原因被定义。因此,在这里,我们研究了视黄质单体的溶液结构以及使用Biophysics和Cryo-EM的组合方法的两种XLRS导致突变体的影响。视黄藻素单体具有细长结构,其在八大组组件中持续存在。 Retinoschisin形成八羟寡核苷酸的二聚体,每个八大号环采用平面螺旋桨结构。八铬物结构的八铬物的比较表明在二聚化时表明视黄芩素辛酸的一致变化,表明八表示为六烷基的结构提供了稳定的界面。在八羟酮之间的界面中发现H207Q XLRS相关的突变,并破坏了单体和八大辛烷色素。八次分子二聚化与视网膜细胞层之间的视网膜蛋白的相互作用的粘合功能一致,因此拆卸将防止相对膜之间的结构耦合。相比之下,R141H突变的Cryo-EM结构分析〜4.2?发现分辨率仅导致螺旋桨提示中的微妙构象变化,可能会扰乱相互作用位点。这些发现在一起,支持视黄芪组件中两类XLRS相关突变的不同机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号