首页> 外文期刊>Human Molecular Genetics >Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders
【24h】

Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders

机译:组蛋白脱甲基酶KDM5C是萨哈敏感的中心毂,其在多种神经发育障碍中涉及的转录轴的十字路口

获取原文
获取原文并翻译 | 示例
           

摘要

A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.
机译:一种不分发的大量神经发育障碍(NDDS)是由编码转录因子和染色质调节剂的基因中的变体引起的。然而,相应蛋白质之间的功能相互作用仅是部分已知的。这里,我们表明,编码H3K4去甲基酶的KDM5C在三个调节蛋白ARX,ZNF711和PHF8的控制下的转录轴的交叉点。有趣的是,所有四种基因(KDM5C,ARX,ZNF711和PHF8)中的突变与包含智力残疾的X链NDDS作为核心特征有关。 KDM5C启动子的体外分析显示ARX和ZNF711作为激活KDM5表达的拮抗转录因子并竞争募集PHF8。这些基因中突变的功能分析显示表型严重程度与KDM5C转录活性的降低之间的相关性。 KDM5C减少与芳族末部小鼠胚胎脑中的下游靶基因SCN2A,SYN1和BDNF的抑制有关。旨在校正KDM5C的错误表达,研究FDA批准的组蛋白脱乙酰化酶抑制剂Suberanile羟肟酸(Saha)的作用。在Arx-Ko鼠ES衍生的神经元中,萨哈能够拯救KDM5C枯竭,回收H3K4ME3信号传导并改善神经元分化。实际上,在Arx / Alr-1缺乏Caenorhabditis elegiss动物中,Saha被证明抵消了缺陷的KDM5C / RBR-2-H3K4ME3信号传导,恢复异常行为表型并改善神经元成熟。总体而言,我们的研究表明,KDM5C是一个跨越多个NDDS的保守和可毒性的效应分子,用于使用SAHA的使用可能被认为是潜在的治疗策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号