...
首页> 外文期刊>Trends in Ecology & Evolution >Analog design with Line-TFET device experimental data: from device to circuit level
【24h】

Analog design with Line-TFET device experimental data: from device to circuit level

机译:具有线路TFET器件实验数据的模拟设计:从设备到电路电平

获取原文
获取原文并翻译 | 示例
           

摘要

This work studies the use of line-tunnel field effect transistor (Line TFET) devices in analog applications. It presents the DC and small signal characteristics of these devices and compares them with other TFET topologies and with conventional MOSFET technology. The Line-TFET's saturation characteristics are also closely studied, through simulations and experimental characterization, revealing that point tunneling leakage from source to drain not only limits the bias voltage and the gate area but also makes the output conductance independent of the gate length. A common source stage is designed to illustrate and further explore this fact, making comparisons with conventional MOSFET technology. In order to obtain an amplifier with very high voltage gain, a two-stage operational transconductance amplifier is designed considering two different starting points: fixed transistor efficiency (gm/Ids) or fixed normalized current (Ids/W) in order to obtain similar conditions of performance for Line-TFET and MOSFET devices. It is revealed that the Line-TFET design always achieves much higher intrinsic voltage gain (of up to 115 dB) and is more suitable for low power, low frequency applications. Thus, a third design is performed with Line-TFET devices by using gate lengths of 100 nm, achieving 71 dB of open loop voltage gain and 18 nW of power dissipation, which may be suitable for applications such as bio-signal acquisition.
机译:这项工作研究了模拟应用中的线隧道场效应晶体管(线TFET)器件的使用。它介绍了这些器件的直流和小信号特性,并将其与其他TFET拓扑和传统MOSFET技术进行比较。通过仿真和实验表征,还密切研究了线路TFET的饱和度特性,揭示了从源漏光的点隧道泄漏不仅限制偏置电压和栅极区域,而且还使输出电导无关。旨在说明和进一步探索与传统MOSFET技术的比较来说明和进一步探索这一事实。为了获得具有非常高电压增益的放大器,考虑两个不同的起点:固定晶体管效率(GM / ID)或固定归一化电流(IDS / W),设计了两级操作跨导放大器,以获得类似的条件线路TFET和MOSFET设备的性能。据透露,线路TFET设计始终达到更高的内在电压增益(高达115 dB),更适合低功耗,低频应用。因此,通过使用100nm的栅极长度使用线路TFET器件来执行第三设计,实现71dB的开环电压增益和18 nW的功率耗散,这可以适用于诸如生物信号采集的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号