首页> 外文期刊>Theory in biosciences >Gene-mating dynamic evolution theory: fundamental assumptions, exactly solvable models and analytic solutions
【24h】

Gene-mating dynamic evolution theory: fundamental assumptions, exactly solvable models and analytic solutions

机译:基因交配动态演进理论:基础假设,完全可解决的模型和分析解决方案

获取原文
获取原文并翻译 | 示例
           

摘要

Fundamental properties of macroscopic gene-mating dynamic evolutionary systems are investigated. A model is studied to describe a large class of systems within population genetics. We focus on a single locus, any number of alleles in a two-gender dioecious population. Our governing equations are time-dependent continuous differential equations labeled by a set of parameters, where each parameter stands for a population percentage carrying certain common genotypes. The full parameter space consists of all allowed parameters of these genotype frequencies. Our equations are uniquely derived from four fundamental assumptions within any population: (1) a closed system; (2) average-and-random mating process (mean-field behavior); (3) Mendelian inheritance; and (4) exponential growth and exponential death. Even though our equations are nonlinear with time-evolutionary dynamics, we have obtained an exact analytic time-dependent solution and an exactly solvable model. Our findings are summarized from phenomenological and mathematical viewpoints. From the phenomenological viewpoint, any initial parameter of genotype frequencies of a closed system will eventually approach a stable fixed point. Under time evolution, we show (1) the monotonic behavior of genotype frequencies, (2) any genotype or allele that appears in the population will never become extinct, (3) the Hardy-Weinberg law and (4) the global stability without chaos in the parameter space. To demonstrate the experimental evidence for our theory, as an example, we show a mapping from the data of blood type genotype frequencies of world ethnic groups to our stable fixed-point solutions. From the mathematical viewpoint, our highly symmetric governing equations result in continuous global stable equilibrium solutions: these solutions altogether consist of a continuous curved manifold as a subspace of the whole parameter space of genotype frequencies. This fixed-point manifold is a global stable attractor known as the Hardy-Weinberg manifold, attracting any initial point in any Euclidean fiber bounded within the genotype frequency space to the fixed point where this fiber is attached. The stable base manifold and its attached fibers form a fiber bundle, which fills in the whole genotype frequency space completely. We can define the genetic distance of two populations as their geodesic distance on the equilibrium manifold. In addition, the modification of our theory under the process of natural selection and mutation is addressed.
机译:研究了宏观基因配合动态进化系统的基本性质。研究了一种模型来描述人口遗传学中的一大类系统。我们专注于单一的基因座,任何两性的巨型人口的等位基因。我们的控制方程是由一组参数标记的时间依赖性连续微分方程,其中每个参数代表携带某些常见基因型的人口百分比。完整参数空间由这些基因型频率的所有允许参数组成。我们的方程类别是唯一的来自任何人口中的四个基本假设:(1)一个封闭的系统; (2)平均和随机配合过程(平均场行为); (3)孟德利亚遗产; (4)指数增长和指数死亡。尽管我们的等式是非线性的,但是我们已经获得了精确的分析时间依赖性解决方案和完全可溶性模型。我们的研究结果概述了现象学和数学观点。从现象学的观点来看,封闭系统的基因型频率的任何初始参数最终将接近稳定的固定点。在时间的演变下,我们展示(1)基因型频率的单调行为,(2)在人口中出现的任何基因型或等位基因永远不会灭绝,(3)哈迪 - Weinberg法和(4)没有混乱的全球稳定性在参数空间中。为了展示我们理论的实验证据,作为一个例子,我们展示了从世界族群的血型基因型频率数据到我们稳定的定点解决方案的映射。从数学观点来看,我们的高度对称的控制方程导致连续全球稳定的平衡解决方案:这些解决方案完全由连续弯曲的歧管作为基因型频率的整个参数空间的子空间组成。该固定点歧管是一种全球稳定的吸引子,称为Hardy-Weinberg歧管,吸引了在基因型频率空间内有界定的任何次核纤维中的任何初始点,到附着该光纤的固定点。稳定的基础歧管及其附着的纤维形成纤维束,其完全填充整个基因型频率空间。我们可以将两个群体的遗传距离定义为均衡歧管上的测地距。此外,解决了在自然选择和突变过程下的理论的修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号