...
首页> 外文期刊>The Plant Cell >Biochemical and Genetic Analysis Identify CSLD3 as a beta-1,4-Glucan Synthase That Functions during Plant Cell Wall Synthesis
【24h】

Biochemical and Genetic Analysis Identify CSLD3 as a beta-1,4-Glucan Synthase That Functions during Plant Cell Wall Synthesis

机译:生物化学和遗传分析鉴定CSLD3作为植物细胞壁合成中的β-1,4-葡聚糖合成酶的β-1,4-葡聚糖合成酶

获取原文
获取原文并翻译 | 示例

摘要

In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the beta-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual beta-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, and supporting computational modeling and simulation, to demonstrate that Arabidopsis (Arabidopsis thaliana) CSLD3 is a UDP-glucose-dependent beta-1,4glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6.
机译:在植物中,在显影过程中细胞尺寸和形状的变化基本上取决于合成和改性细胞壁多糖的能力。由陆地植物产生的细胞壁多糖的主要类是纤维素,半纤维素和果胶。纤维素合酶(CESA)和纤维素合酶样(CSL)家族的成员编码糖基转移酶,其合成纤维素和大多数包含植物细胞壁的纤维素和最半纤维素多糖的β-1,4-连接的糖粉。纤维素微纤维是植物电池壁中的主要承载部件,并由通过CESA蛋白合成的个体β-1,4-葡聚糖聚合物组装成植物质膜中称为CESA复合物的多聚体络合物。在不同的偏振片壁沉积模式期间,例如在植物细胞因子期间形成根毛和花粉管或细胞板的Novo形成的尖端生长中,新合成的细胞壁多糖沉积在受限制的区域中细胞。这些过程需要CESA样D亚家族的成员的活动。然而,虽然这些CSLD多糖合成酶至关重要,但它们合成的多糖的性质仍然难以捉摸。在这里,我们使用遗传救援实验与CSLD-CESA嵌合蛋白,体外生化重构和支持计算建模和模拟的组合,以证明拟南芥(拟南芥)CSLD3是UDP-葡萄糖依赖性β-1,4Glucan形成蛋白质复合物的合成酶显示与CESA6形成的类似超微结构特征。

著录项

  • 来源
    《The Plant Cell》 |2020年第5期|共19页
  • 作者单位

    Univ Michigan Dept Mol Cellular &

    Dev Biol Ann Arbor MI 48109 USA;

    Univ Michigan Dept Mol Cellular &

    Dev Biol Ann Arbor MI 48109 USA;

    Univ Michigan Dept Chem Engn Ann Arbor MI 48109 USA;

    Univ Georgia Complex Carbohydrate Res Ctr Athens GA 30602 USA;

    Univ Michigan Dept Chem Engn Ann Arbor MI 48109 USA;

    Univ Georgia Complex Carbohydrate Res Ctr Athens GA 30602 USA;

    Univ Georgia Complex Carbohydrate Res Ctr Athens GA 30602 USA;

    Univ Michigan Dept Mol Cellular &

    Dev Biol Ann Arbor MI 48109 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物细胞学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号