首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering >Methodology for predicting brake squeal propensity using complex eigenvalue analysis, including thermo-mechanical effects
【24h】

Methodology for predicting brake squeal propensity using complex eigenvalue analysis, including thermo-mechanical effects

机译:使用复杂的特征值分析预测制动尖叫倾角的方法,包括热机械效应

获取原文
获取原文并翻译 | 示例
           

摘要

With brake squeal being the most prevalent noise vibration and harshness issue in modern vehicles, this paper presents an improved methodology for brake squeal propensity prediction at the design stage. The research established four clearly defined Stages' in conducting finite element squeal analyses, describing crucial input data, modelling procedures, output and validation results. Stage 1 deals with free-free modal characteristics of individual brake components and their material characteristics. Stage 2 combines individual parts, conducting brake assembly mechanical finite element analyses. Stage 3 concentrates on fully coupled thermo-mechanical finite element analyses, and the concluding stage, Stage 4, focuses on brake assembly stability analyses. Validations proved that very accurate predictions are possible, but the geometries, material characteristics and established modelling procedures must be strictly followed. Material characteristics were most prone to introduce discrepancies with measured values. Generic' values are found to be unacceptable and conducting own measurements was necessary, in particular for the friction material, whose anisotropic properties have been measured in detail, leading to high accuracy in predicting pad natural modes and frequencies. In Stage 4, the stability analyses of the full brake assembly were based on the complex eigenvalue analysis (which included thermal aspects), with the sign of the real part giving an indication of stability and the imaginary part defining the frequency of the unstable mode. Instabilities and frequencies predicted match well with the values measured in dynamometer tests, clearly demonstrating the influence of thermal effects. The final output of the procedures described in this paper is a validated three-dimensional thermo-mechanical finite element noise vibration and harshness brake assembly model in which natural frequencies and modes, instabilities and contributing factors can be predicted at any time during a brake application.
机译:通过制动尖叫成为现代车辆中最普遍的噪音振动和严苛问题,本文提出了一种改进的制动尖端预测方法在设计阶段。该研究在进行有限元尖叫分析中建立了四个明确定义的阶段,描述了重要的输入数据,建模程序,输出和验证结果。第1阶段涉及单独制动部件的可自由模态特性及其材料特性。第2阶段结合各个部件,导电制动器组件机械有限元分析。第3阶段专注于完全耦合的热机械有限元分析,以及结束阶段,第4阶段,专注于制动组件稳定性分析。验证证明,必须严格遵循非常准确的预测,但几何形状,材料特性和建立的建模程序必须遵循。材料特性最容易引入具有测量值的差异。发现通用的值是不可接受的,并且需要进行自身的测量,特别是对于摩擦材料,其各向异性特性已经详细测量,导致预测垫天然模式和频率的高精度。在第4阶段,全制动器组件的稳定性分析基于复杂的特征值分析(包括热方面),具有真实部件的标志,其指示稳定性和定义不稳定模式频率的假想部分。稳定性和频率预测匹配良好的测量计测试中的值,清楚地证明了热效应的影响。本文中描述的程序的最终输出是经过验证的三维热机械有限元噪声振动和严格制动器组件模型,其中可以在制动应用期间随时预测自然频率和模式,不稳定性和贡献因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号