首页> 外文学位 >An optimal design method for brake squeal noise based on complex eigenvalue and sensitivity analyses and response surface methodology.
【24h】

An optimal design method for brake squeal noise based on complex eigenvalue and sensitivity analyses and response surface methodology.

机译:基于复特征值和灵敏度分析以及响应面方法的制动尖叫噪声优化设计方法。

获取原文
获取原文并翻译 | 示例

摘要

Brake squeal noise is caused by the dynamic instability originating from the rotational friction in the brake system. An asymmetric stiffness matrix is the end result of the dynamic friction in a finite element model of a brake system.; Complex eigenvalue analysis has been used to assess the brake squeal frequencies and their corresponding instabilities of an asymmetric eigenvalue problem (AEVP). The double shift QR or the QZ algorithms should be applied to solve a real AEVP. Other algorithms produce a number of fictitious complex eigenvalues.; The optimization problem for the brake squeal noise consists of a complex-valued objective function (COF) and physical design variables (PDV). A direct solution has been hampered by many unknowns between the COF and PDV. Nonetheless, an optimal solution is possible if the problem is separated into two steps.; In the first step, sensitivity analysis is used to calculate the optimal components' eigenvalues capable of eliminating all unstable eigenvalues. If only the sensitive components' eigenvalues for each unstable eigenvalue are chosen as design variables, finding an optimal solution is virtually guaranteed.; It was first discovered that one of the rotor in-plane doublet modes has the opposite sign to the other in the real parts of the sensitivity, and this precludes eliminating the unstable eigenvalues, which are dominated by rotor in-plane modes. However, it was also found that the corresponding unstable eigenvalues can be eliminated if we use the frequency separation of these modes, which is obtainable by including the rotational effect into the FE model.; Once the optimal components' eigenvalues are found in the first step, the second step of the optimization involves the real-valued objective function. Resolving complex eigenvalues in essence allowed us to resume the conventional optimization with response surface methodology. The optimal physical dimensions are thus obtained in this step.; Using this approach, the double-piston-floating-type-caliper disk brake system is successfully optimized.
机译:制动尖叫声是由制动系统中的旋转摩擦引起的动态不稳定性引起的。不对称刚度矩阵是制动系统有限元模型中动摩擦的最终结果。复杂特征值分析已用于评估制动尖叫频率及其非对称特征值问题(AEVP)的相应不稳定性。应该使用双移位QR或QZ算法来求解实际的AEVP。其他算法会产生许多虚拟的复杂特征值。制动啸叫声的优化问题包括一个复数值目标函数(COF)和物理设计变量(PDV)。直接解决方案因COF和PDV之间的许多未知因素而受阻。但是,如果将问题分为两个步骤,则可能是最佳解决方案。第一步,使用灵敏度分析来计算能够消除所有不稳定特征值的最优组件特征值。如果只选择每个不稳定特征值的敏感组件特征值作为设计变量,则实际上可以保证找到最佳解决方案。首次发现,在灵敏度的实部中,一个转子面内双峰模式具有与另一个相反的符号,这排除了消除不稳定特征值的问题,该特征值受转子面内模式控制。然而,还发现,如果我们使用这些模式的频率分离,则可以消除相应的不稳定特征值,这可以通过将旋转效应包括在有限元模型中来获得。一旦在第一步中找到了最优分量的特征值,优化的第二步就涉及了实值目标函数。从本质上讲,解决复杂的特征值使我们能够使用响应面方法恢复传统的优化。因此,在该步骤中获得了最佳的物理尺寸。使用这种方法,成功地优化了双活塞浮动式卡钳盘式制动系统。

著录项

  • 作者

    Lee, Heewook.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;
  • 关键词

  • 入库时间 2022-08-17 11:47:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号