首页> 外文会议>EuroBrake Conference >NEW NUMERICAL METHODS FOR THE COMPLEX EIGENVALUE ANALYSIS OF DISK BRAKE SQUEAL
【24h】

NEW NUMERICAL METHODS FOR THE COMPLEX EIGENVALUE ANALYSIS OF DISK BRAKE SQUEAL

机译:磁盘制动尖峰复杂特征值分析的新数值方法

获取原文

摘要

The dynamical modeling of a disk brake with respect to squeal and its discretization via the Finite Element Method (FEM), e.g., by using commercial FEM packages, usually results in a large-scale quadratic eigenvalue problem (QEVP) with typically up to a million degrees of freedom. Furthermore, inclusion of squeal relevant physical effects such as gyroscopic and circulatory effects, damping and friction results in a QEVP with parameter dependent, non-symmetric coefficients. To identify the role of different parameters responsible for brake-squeal, a detailed parameter study is necessary, which in-turn requires the solution of many large-scale QEVPs for a variety of choices of the parameter. Thereby complex eigenvalues associated with the audible frequency range should be calculated with high accuracy which is called complex eigenvalue analysis (CEA). The state of the art modal-transformation approaches used in standard FE software converts the QEVP to a space of modal-coordinates. The modal-transformation matrices are typically constructed by solving a symmetric linear eigenvalue problem, which is obtained by dropping the non-symmetric, parameter dependent and damping terms in the QEVP, i.e., by neglecting all the physical effects essential for self-excited vibrations. This simplistic approach empirically works well for the problems where an approximation of the imaginary part of the eigenvalues are required, but for studying the dynamical stability behavior of a brake with respect to squeal, a good approximation of both the real and imaginary parts of the eigenvalues with a positive real part is of crucial interest. In this paper, we present a model-order-reduction approach which takes into account the parameter dependent nature of the damping and stiffness matrices. In our approach, we obtain the model-order-reducing subspace by performing a proper orthogonal decomposition (POD) on the matrix of dominant modes of the non-symmetric QEVP for a variety of parameter choices. Numerical experiments suggest that the new POD based approach is more accurate for the brake squeal problem than state of the art algorithms used in FE programs so far.
机译:通过有限元方法(FEM)的尖叫和离散化的磁盘制动器的动态建模,例如通过使用商业有限元包,通常会导致大规模的二次特征值问题(QEEVP),通常高达百万自由程度。此外,包含尖叫的相关物理效果,例如陀螺仪和循环效应,阻尼和摩擦导致具有参数相关的非对称系数的QEVP。为了识别负责制动尖叫的不同参数的作用,需要一种详细的参数研究,这反过来需要解决许多大型Qevps的解决方案的各种参数。由此与可听频率范围相关的复杂的特征值应以高精度计算,称为复眼值分析(CEA)。标准FE软件中使用的最先进的模态转换方法将QEEVP转换为模态坐标的空间。模态变换矩阵通常通过求解对称线性特征值问题来构造,这通过丢弃QEEVP中的非对称,参数依赖性和阻尼术语来获得,即,通过忽略自我激发振动所必需的所有物理效果来获得。这种简单的方法对所需虚拟值的虚部的近似的问题经验良好地工作,而是用于研究制动器的动态稳定性行为相对于尖叫,良好的特征值的真实和虚部的良好近似积极的实际部分是至关重要的兴趣。在本文中,我们提出了一种模型顺序减少方法,其考虑了阻尼和刚度矩阵的参数相关性。在我们的方法中,我们通过对各种参数选择的非对称QEEVP的主导模式的主导模式的矩阵执行适当的正交分解(POD)来获得模型顺序减少子空间。数值实验表明,基于POD的方法对于制动尖叫力的方法比到目前为止FE程序中使用的技术算法的状态更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号