首页> 外文期刊>Physica, E. Low-dimensional systems & nanostructures >Computational modeling of graphene nanopore for using in DNA sequencing devices
【24h】

Computational modeling of graphene nanopore for using in DNA sequencing devices

机译:DNA测序装置中石墨烯纳米孔的计算建模

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene is a promising material for nanopore-sequencing DNA technology. In the current study, we have utilized molecular dynamic simulation in order to fabricate nanopores in the four divergent locations with different properties in a single-layer graphene nanosheet by using clusters bombardment. Ten different kinetic energies have been applied to three different diameters of SiC, Si and diamond clusters to fabricate nanopores. Image processing technology has also been applied to compute the exact area of regular and irregular drilled nanopores. The obtained results suggest that the desired size and qualities of nanopore can be achieved by controlling the type, diameter and the energy of the clusters. We have observed that the average area of nanopores increases by rising the kinetic energy in the most of cases. Moreover, the properties of the incident location can highly affect the area size and quality of the nanopores. The largest area size of the nanopores has been obtained when the incident location is placed in the center of the grains, while the smallest area of nanopores have been observed when the incident point is placed on the grain boundaries junction. Among all three types of clusters, the impact of the diamond cluster with diameter of 2 nm fabricates the most suitable nanopores. Therefore, we have used the diamond cluster to investigate the effect of straining the nanosheet on the topography of nanopores. We applied 3% and 5% of tensile and compressive strain to the graphene nanosheet. Under tensile strains we found that increasing the external tensile strain on the nanosheet fabricates larger nanopores with smoother edges. On the other hand, applying external compressive strains leads to nanopores with more irregular topography.
机译:石墨烯是纳米孔测序DNA技术的有希望的材料。在目前的研究中,我们利用了分子动态模拟,以通过使用群集轰击在单层石墨烯纳米晶片中具有不同性质的四个发散位置中的纳米孔。十种不同的动力能量已应用于三种不同的SiC,Si和金刚石簇,以制造纳米孔。还应用了图像处理技术来计算规则和不规则钻孔纳米孔的精确区域。所得结果表明,通过控制簇的类型,直径和能量,可以实现纳米孔的所需尺寸和质量。我们已经观察到,纳米孔的平均面积通过在大多数情况下升高动能而增加。此外,入射位置的性质可以高度影响纳米孔的面积大小和质量。当入射位置放置在晶粒的中心时,已经获得了纳米孔的最大面积尺寸,而当入射点放置在晶界交界处时,已经观察到纳米孔的最小区域。在所有三种类型的簇中,金刚石簇的撞击直径为2nm,制造最合适的纳米孔。因此,我们使用了钻石簇来研究将纳米蛋白酶紧张在纳米孔的地形上的效果。我们将3%和5%的拉伸和压缩应变施加到石墨烯纳米液中。在拉伸菌株下,我们发现增加纳米片上的外部拉伸应变制造具有更平滑的边缘的较大的纳米孔。另一方面,施加外部压缩菌株导致具有更不规则的地形的纳米孔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号