首页> 外文期刊>Statistics in medicine >Estimation of exposure distribution adjusting for association between exposure level and detection limit
【24h】

Estimation of exposure distribution adjusting for association between exposure level and detection limit

机译:曝光水平与检测极限关联的曝光分布估算

获取原文
获取原文并翻译 | 示例

摘要

In environmental exposure studies, it is common to observe a portion of exposure measurements to fall below experimentally determined detection limits (DLs). The reverse Kaplan-Meier estimator, which mimics the well-known Kaplan-Meier estimator for right-censored survival data with the scale reversed, has been recommended for estimating the exposure distribution for the data subject to DLs because it does not require any distributional assumption. However, the reverse Kaplan-Meier estimator requires the independence assumption between the exposure level and DL and can lead to biased results when this assumption is violated. We propose a kernel-smoothed nonparametric estimator for the exposure distribution without imposing any independence assumption between the exposure level and DL. We show that the proposed estimator is consistent and asymptotically normal. Simulation studies demonstrate that the proposed estimator performs well in practical situations. A colon cancer study is provided for illustration. Copyright (c) 2017 John Wiley & Sons, Ltd.
机译:在环境暴露研究中,通常观察一部分曝光测量以降低实验确定的检测限制(DLS)。反向Kaplan-Meier估算器,用于模拟着名的Kaplan-Meier估算器,用于逆转尺度的右裁定的存活数据,以估算受DLS受到DLS的数据的曝光分布,因为它不需要任何分布假设。然而,反向Kaplan-Meier估算器需要在曝光水平和DL之间的独立假设,并且当违反此假设时,可以导致偏置结果。我们提出了一种用于曝光分布的内核平滑的非参数估计器,而不施加曝光水平与DL之间的任何独立假设。我们表明所提出的估算者是一致的和渐近正常的。仿真研究表明,建议的估算者在实际情况下表现良好。提供了结肠癌研究以用于说明。版权所有(c)2017 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号