首页> 外文期刊>Statistica Sinica >INFERENCE OF BIVARIATE LONG-MEMORY AGGREGATE TIME SERIES
【24h】

INFERENCE OF BIVARIATE LONG-MEMORY AGGREGATE TIME SERIES

机译:二焦化长内存聚合时间序列的推断

获取原文
获取原文并翻译 | 示例

摘要

With the increasing deployment of affordable and sophisticated sensors, multivariate time-series data are increasingly collected. These multivariate time series are often of long memory, the inference of which can be rather complex. We consider the problem of modeling long-memory bivariate time series that are aggregates from an underlying long-memory continuous-time process. We show that, with increasing aggregation, the resulting discrete-time process is approximately a linear transformation of two independent fractional Gaussian noises with the corresponding Hurst parameters equal to those of the underlying continuous-time processes. We use simulations to confirm the good approximation of the limiting model to aggregate data from a continuous-time process. The theoretical and numerical results justify modeling long-memory bivariate aggregate time series by this limiting model. The model parametrization does change drastically in the case of identical Hurst parameters. We derive the likelihood ratio test for testing the equality of the two Hurst parameters, within the framework of Whittle likelihood, and the corresponding maximum likelihood estimators. The limiting properties of the proposed test statistic and of the Whittle likelihood estimation are derived, and their finite sample properties are studied by simulation. The efficacy of the proposed approach is demonstrated with a 2-dimensional robotic positional error time series, which shows that the proposed parsimonious model substantially outperforms a VAR(19) model.
机译:随着经济适用和复杂传感器的越来越大,多变量时间序列数据越来越多地收集。这些多变量时间序列通常是长记忆,推动它可以相当复杂。我们考虑建模长内存双变量时间序列的问题,该时间序列是来自底层的长内存连续时间过程的聚集体。我们表明,随着聚合的增加,所得到的离散时间过程是两个独立的分数高斯噪声的线性变换,其具有等于底层连续过程的围绕的呼应参数。我们使用模拟来确认限制模型的良好近似,以从连续时间过程聚合数据。理论和数值结果是通过该限制模型进行建模的模型长记忆二变共聚合时间序列。模型参数化在相同的赫斯特参数的情况下会急剧变化。我们在旺盛似然框架内获得了测试两个赫斯特参数的平等的似然比测试,以及相应的最大似然估计。推导出所提出的试验统计和扭曲似然估计的限制性,并通过模拟研究了它们的有限样本性质。用二维机器人位置误差时间序列证明了所提出的方法的功效,其示出了所提出的解析模型基本上优于VAR(19)模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号