首页> 外文期刊>Silicon >Photoacoustic Measurements of the Thermal and Elastic Properties of n-Type Silicon Using Neural Networks
【24h】

Photoacoustic Measurements of the Thermal and Elastic Properties of n-Type Silicon Using Neural Networks

机译:N型硅的热和弹性特性使用神经网络的光声测量

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a simple multilayer perceptron neural network with forward signal propagation was designed and used to simultaneously determine the main physical parameters, such as: the thermal diffusivity, thermal expansion coefficient and thickness, from the transmission, frequency-modulated photoacoustic response of the sample. The amplitude and phase responses of the transmission open-cell photoacoustic signals were calculated in n-type silicon plates using a theoretical model and were used to train and test a neural network. The simulation was done in the modulation frequency range from 20 Hz to 20 kHz and using a wide range of expected values of thermal diffusivity and the thermal coefficient of expansion for semiconductor samples as well as their thickness. The advantages and disadvantages of neural networks utilization as an appropriate mathematical tool designated for semiconductor measurement-oriented purposes are analyzed. Network reliability, precision, and the possibility of operation in real time have been verified on an independent set of signals, establishing photoacoustics as a competitive and powerful technique assigned for material characterization.
机译:在本文中,设计了一种具有前进信号传播的简单多层的Perceptron神经网络,并用于同时确定主物理参数,例如:热扩散,热膨胀系数和厚度,从传输,频率调制光声反应样本。使用理论模型在n型硅板中计算传输开放式电池光声信号的幅度和相位响应,并用于训练和测试神经网络。模拟在调制频率范围内从20Hz到20kHz进行,并使用广泛的热漫射性值和半导体样品的膨胀系数以及它们的厚度。分析了神经网络利用作为针对半导体测量定向目的指定的适当数学工具的优点和缺点。网络可靠性,精度和实时操作的可能性已经在独立的信号集上验证,将光声作为竞争和强大的技术建立为分配用于材料表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号