...
首页> 外文期刊>SAE International Journal of Engines >Exploring the Role of Reactivity Gradients in Direct Dual Fuel Stratification
【24h】

Exploring the Role of Reactivity Gradients in Direct Dual Fuel Stratification

机译:探索反应性梯度在直接双燃料分层中的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low-temperature combustion (LTC) strategies have been an active area of research due to their ability to achieve high thermal efficiency while avoiding the formation of NO_x and particulate matter. One of the largest challenges with LTC is the relative lack of authority over the heat release rate profile, which, depending on the particular injection strategy, either limits the maximum attainable load, or creates a tradeoff between noise and efficiency at high load conditions. We have shown previously that control over heat release can be dramatically improved through a combination of reactivity stratification in the premixed charge and a diffusion-limited injection that occurs after the conclusion of the low-temperature heat release, in a strategy called direct dual fuel stratification (DDFS). This paper will focus on the role the of the reactivity gradients in the premixed charge, which are achieved by the relatively early injection of gasoline and the relatively late injection of diesel. Three regimes were identified for the diesel injection timing: premixed, reactivity-controlled, and diffusion-limited, with the reactivity-controlled regime being observed to offer superior control of combustion phasing and noise, while also having the 30% lower unburned hydrocarbons, 40% lower CO, 35% lower soot, and 4% higher gross efficiency than the premixed regime without any increase in NO_x. It was also observed that increasing the energy fraction of the diesel fuel while in the reactivity-controlled regime resulted in further improvements to efficiency and hydrocarbon and CO emissions, while at the same time decreasing peak heat release rate and noise. This was achieved by simultaneously advancing combustion phasing and increasing combustion duration, which is a method of control unique to the DDFS strategy.
机译:由于它们在避免形成NO_X和颗粒物质的同时,低温燃烧(LTC)策略是一种活跃的研究领域,因为它们在避免形成NO_X和颗粒物质时。 LTC的最大挑战之一是对热释放率曲线相对缺乏权威,这取决于特定的注射策略,它们限制了最大可获得的负载,或在高负荷条件下产生噪声和效率之间的权衡。我们之前已经显示过,通过预混电荷和扩散限制注射在低温热释放之后发生的反应分层的组合,可以通过反应性分层的组合来显着改善热释放的控制,该策略在称为直接双燃料分层之后(DDFS)。本文将专注于反应性梯度在预混合电荷中的作用,这是通过相对早期注射汽油和相对晚期注射柴油的汽油而实现的作用。鉴定了柴油喷射正时的三个制度:预混,反应性控制和扩散限制,具有反应性控制的制度,以提供燃烧序列和噪声的优异控制,同时还具有30%的碳氢化合物,40 %较低的CO,35%较低的烟灰,总效率较高的4%,而不是预混合的制度,没有NO_X任何增加。还观察到,在反应性控制的制度中增加柴油燃料的能量分数导致效率和烃和共同发射的进一步改善,同时降低峰值热释放速率和噪音。这是通过同时推进燃烧相位和增加燃烧持续时间来实现的,这是一种对DDFS策略具有独特的控制方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号