首页> 外文期刊>SAE International Journal of Engines >Effects of Stepped-Lip Combustion System Design and Operating Parameters on Turbulent Flow Evolution in a Diesel Engine
【24h】

Effects of Stepped-Lip Combustion System Design and Operating Parameters on Turbulent Flow Evolution in a Diesel Engine

机译:阶梯式燃烧系统设计和操作参数对柴油发动机湍流进化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Interactions between fuel sprays and stepped-lip diesel piston bowls can produce turbulent flow structures that improve efficiency and emissions, but the underlying mechanisms are not well understood. Recent experimental and simulation efforts provide evidence that increased efficiency and reduced smoke emissions coincide with the formation of long-lived, energetic vortices during the mixing-controlled portion of the combustion event. These vortices are believed to promote fuel-air mixing, increase heat-release rates, and improve air utilization, but they become weaker as main injection timing is advanced nearer to the top dead center (TDC). Further efficiency and emissions benefits may be realized if vortex formation can be strengthened for near-TDC injections. This work presents a simulation-based analysis of turbulent flow evolution within a stepped-lip combustion chamber. A conceptual model summarizes key processes in the evolution of turbulent flow for main injections starting after TDC. Differences in turbulent flow evolution are described for a near-TDC main injection, and potential variations in combustion system design and operating parameters to enhance vortex formation under these conditions are hypothesized. The parametric studies executed to test these hypotheses reveal that while intake pressure and spray targeting play important roles in turbulent flow evolution, they are not capable of fundamentally changing the late-cycle flow topology for near-TDC injection timings. A dimpled stepped-lip (DSL) piston design is developed that supports the hypothesis that increasing space in the squish region promotes vortex formation for near-TDC injection timings. Further analyses reveal the mechanisms by which the DSL piston strengthens vortex formation.
机译:燃料喷雾和踩唇柴油活塞碗之间的相互作用可以产生湍流结构,从而提高效率和排放,但潜在的机制也不太了解。最近的实验和仿真努力提供了提高效率和减少烟雾排放的证据,以在燃烧事件的混合控制部分期间形成长寿的能量涡流。这些涡流被认为促进燃料空气混合,增加热释放速率,并提高空气利用,但它们变得越来越弱,因为主喷射时序更近的顶部死亡中心(TDC)。如果可以加强用于接近TDC注射的涡流形成,则可以实现进一步的效率和排放益处。该工作提出了一种基于模拟的湍流流速在阶梯式燃烧室内的湍流进化分析。概念模型总结了TDC后主要注射湍流进化的关键过程。对于近TDC主喷射描述了湍流流动越差的差异,并且在这些条件下提高涡旋形成的燃烧系统设计和操作参数的潜在变化是假设的。执行的参数研究以测试这些假设显示,虽然进气压力和喷雾靶向在湍流进化中起重要作用,但它们不能从根本上改变近TDC喷射定时的后期流动拓扑。开发了一种凹陷的踩唇(DSL)活塞设计,其支持提高鳞状区域中的空间的假设促进了近TDC喷射定时的涡流形成。进一步分析揭示了DSL活塞增强涡旋形成的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号