首页> 外文期刊>Optimization Letters >O(n) working precision inverses for symmetric tridiagonal Toeplitz matrices with floating point calculations
【24h】

O(n) working precision inverses for symmetric tridiagonal Toeplitz matrices with floating point calculations

机译:o(n)对称三角形TOEPLITZ矩阵具有浮点计算的工作精度逆

获取原文
获取原文并翻译 | 示例

摘要

A well known numerical task is the inversion of large symmetric tridiagonal Toeplitz matrices, i.e., matrices whose entries equal a on the diagonal and b on the extra diagonals (). The inverses of such matrices are dense and there exist well known explicit formulas by which they can be calculated in . In this note we present a simplification of the problem that has proven to be rather useful in everyday practice: If , that is, if the matrix is strictly diagonally dominant, its inverse is a band matrix to working precision and the bandwidth is independent of n for sufficiently large n. Employing this observation, we construct a linear time algorithm for an explicit tridiagonal inversion that only uses floating point operations. On the basis of this simplified inversion algorithm we outline the cornerstones for an efficient parallelizable approximative equation solver.
机译:众所周知的数值任务是大型对称三角形ToEplitz矩阵的反转,即,其条目等于对角线上的条目和B上的B上的B的矩阵。 这种矩阵的反相是致密的,并且存在众所周知的显式公式,其可以通过它们计算它们。 在本说明中,我们展示了在日常做法中证明在日常做法中相当有用的问题的简化:即,如果矩阵严格对角占主导地位,则其逆向工作精度和带宽与n无关的频带矩阵 足够大的n。 采用此观察,我们构建用于显式三角形反演的线性时间算法,该算法仅使用浮点操作。 在这种简化的反演算法的基础上,我们概述了基于基于基于基于的基石,以获得有效的并行化近似等式求解器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号