...
首页> 外文期刊>Robotics and Autonomous Systems >Lightweight physics-based models for the control of fluid-mediated self-assembly of robotic modules
【24h】

Lightweight physics-based models for the control of fluid-mediated self-assembly of robotic modules

机译:基于轻质物理的基于机器人模块的流体介导的自组装的模型

获取原文
获取原文并翻译 | 示例
           

摘要

Self-assembling robotic systems form a subclass of distributed robotic systems that undertake the fundamental task of structure formation. These systems build desired target structures by putting their constituting robotic modules together in a distributed and stochastic fashion, i.e., through a self-assembly process. The use of self-assembly as the underpinning coordination mechanism provides powerful means for structure formation across a variety of length scales as well as media. In particular, fluidic media have been shown to be very efficient enablers for small-scale self-assembly. In this paper, we consider a distributed robotic system consisting of multiple miniature robotic modules performing self-assembly in 2D, at the water-air interface. The course of the assembly process in the system culminating in a predefined target structure is shaped by the ruleset controllers programmed on the individual robotic modules, allowing only certain formations and ruling out others throughout the process. Designing control strategies relies heavily on accurate models of the system dynamics. Faithfully modeling such systems and their inter-module interactions involves capturing the hydrodynamic forces acting on the modules using typically computationally expensive fluid dynamic modeling tools. Such computational cost restricts the usability of the resulting models, particularly for the purpose of designing optimized controllers. In this paper, we present a new modeling approach and proceed by employing the resulting model for optimizing ruleset controllers. First, we show how the hardware and firmware of the robotic platform can be faithfully modeled in a high-fidelity robotic simulator. Second, we develop a physics plugin to recreate the hydrodynamic forces acting on the modules and propose a trajectory-based method for calibrating the plugin model parameters. Finally, we employ the resulting model and obtain automatically optimized ruleset controllers for given target structures. (C) 2019 Published by Elsevier B.V.
机译:自组装机器人系统形成分布式机器人系统的子类,该系统进行结构形成的基本任务。这些系统通过将构成机器人模块以分布式和随机的方式将组成的机器人模块(即,通过自组装过程来构建所需的目标结构。使用自组装作为支撑协调机制提供了各种长度尺度以及媒体的结构形成的强大手段。特别地,流体介质已被证明是小型自组装的非常有效的促进器。在本文中,我们考虑了一种分布式机器人系统,包括在水 - 空中界面处执行自组装的多个微型机器人模块。在预定目标结构中的系统中的组装过程的过程由在各个机器人模块上编程的规则集控制器成形,允许在整个过程中仅判断某些地层并排除其他结构。设计控制策略严重依赖于系统动态的准确模型。忠实地建模这种系统及其模块间相互作用涉及使用通常计算昂贵的流体动态建模工具捕获作用在模块上的流体动力力。这种计算成本限制了所得模型的可用性,特别是为了设计优化控制器的目的。在本文中,我们介绍了一种新的建模方法,并通过采用所得模型来进行优化规则集控制器。首先,我们展示了如何在高保真机器人模拟器中忠实地建模机器人平台的硬件和固件。其次,我们开发一个物理插件,以重新创建作用在模块上的流体动力力,并提出基于轨迹的方法,用于校准插件模型参数。最后,我们使用生成的模型,并获得自动优化的规则集控制器,用于给定目标结构。 (c)2019年由elestvier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号