...
首页> 外文期刊>Lab on a chip >A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel
【24h】

A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel

机译:利用收缩微通道对生物细胞机械型分析的组合实验和理论方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report a combined experimental and theoretical technique that enables the characterization of various mechanical properties of biological cells. The cells were infused into a microfluidic device that comprises multiple parallel micro-constrictions to eliminate device clogging and facilitate characterization of cells of different sizes and types on a single device. The extension ratio lambda and transit velocity U-c of the cells were measured using high-speed and high-resolution imaging which were then used in a theoretical model to predict the Young's modulus Ec = f(lambda, U-c) of the cells. The predicted Young's modulus E-c values for three different cell lines (182 +/- 34.74 Pa for MDA MB 231, 360 +/- 75 Pa for MCF 10A and, 763 +/- 93 Pa for HeLa) compare well with those reported in the literature from micropipette measurements and atomic force microscopy measurement within 10% and 15%, respectively. Also, the Young's modulus of MDA-MB-231 cells treated with 50 mu M 4-hyrdroxyacetophenone (for localization of myosin II) for 30 min was found out to be 260 perpendicular to 52 Pa. The entry time t(e) of cells into the micro-constrictions was predicted using the model and validated using experimentally measured data. The entry and transit behaviors of cells in the microconstriction including cell deformation (extension ratio lambda) and velocity U-c were experimentally measured and used to predict various cell properties such as the Young's modulus, cytoplasmic viscosity and induced hydrodynamic resistance of different types of cells. The proposed combined experimental and theoretical approach leads to a new paradigm for mechanophenotyping of biological cells.
机译:我们报告了一种组合的实验和理论技术,使得能够表征生物细胞的各种机械性能。将细胞注入到微流体装置中,该装置包括多个平行的微卷积,以消除装置堵塞并促进单个装置上不同尺寸和类型的细胞的表征。使用高速和高分辨率成像测量细胞的延伸比λ和传递速度U-C,然后在理论模型中使用,以预测细胞的杨氏模数Ec = F(Lambda,U-C)。预测的杨氏模数EC值对于三种不同的细胞系(MDA MB 231,360 +/- 75 PA,MCF 10A的360 +/- 75Pa,Hela的763 +/- 93 Pa)与那些报道的那些相比从微移液素测量和原子力显微镜的文献分别在10%和15%以内测量。此外,用50μm4-羟基苯甲酮处理的MDA-MB-231细胞的杨氏模量(用于肌蛋白II的定位)30分钟,呈现为260垂直于52Pa。细胞的进入时间t(e)使用模型预测微收缩,并使用实验测量数据进行验证。实验测量包括细胞变形(延长率Lambda)和速度U-C的微量组织中细胞的进入和转运行为,并用于预测各种细胞性质,例如杨氏模量,细胞质粘度和不同类型细胞的诱导的流体动力学抗性。提出的组合实验和理论方法导致新型划线用于生物细胞的机械型分型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号