首页> 外文期刊>Neuroinformatics >Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification
【24h】

Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification

机译:ULS组的融合受MCI分类的高价低阶稀疏功能连接网络

获取原文
获取原文并翻译 | 示例

摘要

Functional connectivity networks, derived from resting-state fMRI data, have been found as effective biomarkers for identifying mild cognitive impairment (MCI) from healthy elderly. However, the traditional functional connectivity network is essentially a low-order network with the assumption that the brain activity is static over the entire scanning period, ignoring temporal variations among the correlations derived from brain region pairs. To overcome this limitation, we proposed a new type of sparse functional connectivity network to precisely describe the relationship of temporal correlations among brain regions. Specifically, instead of using the simple pairwise Pearson's correlation coefficient as connectivity, we first estimate the temporal low-order functional connectivity for each region pair based on an ULS Group constrained-UOLS regression algorithm, where a combination of ultra-least squares (ULS) criterion with a Group constrained topology structure detection algorithm is applied to detect the topology of functional connectivity networks, aided by an Ultra-Orthogonal Least Squares (UOLS) algorithm to estimate connectivity strength. Compared to the classical least squares criterion which only measures the discrepancy between the observed signals and the model prediction function, the ULS criterion takes into consideration the discrepancy between the weak derivatives of the observed signals and the model prediction function and thus avoids the overfitting problem. By using a similar approach, we then estimate the high-order functional connectivity from the low-order connectivity to characterize signal flows among the brain regions. We finally fuse the low-order and the high-order networks using two decision trees for MCI classification. Experimental results demonstrate the effectiveness of the proposed method on MCI classification.
机译:已经发现从休息状态FMRI数据的功能连接网络被发现是用于识别来自健康老年人的轻度认知障碍(MCI)的有效生物标志物。然而,传统的功能连接网络基本上是一个低位的网络,假设大脑活动在整个扫描周期内静态,忽略了从脑区域对导出的相关的时间变化。为了克服这种限制,我们提出了一种新型的稀疏功能连接网络,精确描述了脑区域之间的时间相关关系。具体而言,而不是使用简单的成对皮尔森的相关系数作为连接,首先估计基于ULS组约束 - UOL回归算法的每个区域对的时间低阶功能连接,其中超最小二乘(ULS)组合利用组约束拓扑结构检测算法的标准应用于检测功能连接网络的拓扑,通过超正交最小二乘(UOL)算法来估计连接强度。与古典最小二乘标准相比,该标准仅测量观察信号和模型预测函数之间的差异,ULS标准考虑了观察信号的弱导数与模型预测函数之间的差异,从而避免了过度拟合问题。通过使用类似的方法,我们从低阶连接到表征大脑区域之间的信号流量的高阶功能连接。我们最终使用两个决策树融合了低阶和高阶网络,用于MCI分类。实验结果表明了提出的方法对MCI分类的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号