首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Correlation-based channel selection and regularized feature optimization for MI-based BCI
【24h】

Correlation-based channel selection and regularized feature optimization for MI-based BCI

机译:基于MI的BCI基于相关的信道选择和正则化功能优化

获取原文
获取原文并翻译 | 示例

摘要

Multi-channel EEG data are usually necessary for spatial pattern identification in motor imagery (MI)-based brain computer interfaces (BCIs). To some extent, signals from some channels containing redundant information and noise may degrade BCI performance. We assume that the channels related to MI should contain common information when participants are executing the MI tasks. Based on this hypothesis, a correlation-based channel selection (CCS) method is proposed to select the channels that contained more correlated information in this study. The aim is to improve the classification performance of MI-based BCIs. Furthermore, a novel regularized common spatial pattern (RCSP) method is used to extract effective features. Finally, a support vector machine (SVM) classifier with the Radial Basis Function (RBF) kernel is trained to accurately identify the MI tasks. An experimental study is implemented on three public EEG datasets (BCI competition IV dataset1, BCI competition III dataset IVa and BCI competition III dataset Ma) to validate the effectiveness of the proposed methods. The results show that the CCS algorithm obtained superior classification accuracy (78% versus 56.4% for dataset1, 86.6% versus 76.5% for dataset 2 and 91.3% versus 85.1% for dataset 3) compared to the algorithm using all channels (AC), when CSP is used to extract the features. Furthermore, RCSP could further improve the classification accuracy (81.6% for datasetl, 87.4% for dataset2 and 91.9% for dataset 3), when CCS is used to select the channels. (C) 2019 Elsevier Ltd. All rights reserved.
机译:多通道EEG数据通常是电动机图像(MI)的空间模式识别所必需的,基于脑电脑接口(BCI)。在某种程度上,来自包含冗余信息和噪声的一些信道的信号可能会降低BCI性能。我们假设与MI相关的频道应该在参与者正在执行MI任务时包含公共信息。基于该假设,提出了一种基于相关的信道选择(CCS)方法来选择包含本研究中的信息的信道。目的是提高基于MI的BCI的分类性能。此外,使用一种新的正则化公共空间模式(RCSP)方法来提取有效特征。最后,培训具有径向基函数(RBF)内核的支持向量机(SVM)分类器以准确地识别MI任务。在三个公共EEG数据集(BCI竞赛IV Dataset1,BCI竞赛III Dataset IVA和BCI竞赛III数据集MA)上实施了一个实验研究,以验证所提出的方法的有效性。结果表明,与使用所有通道(AC)的算法相比,CCS算法获得了卓越的分类精度(数据集1,86.6%,对于数据集2的86.6%,而数据集3的85.3%,而且数据集3的85.1%。 CSP用于提取该功能。此外,当CCS用于选择通道时,RCSP可以进一步提高分类精度(DataSetL的81.6%,对于DataSet2的87.4%,对于DataSet 3的91.9%)。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号