首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Liver disease screening based on densely connected deep neural networks
【24h】

Liver disease screening based on densely connected deep neural networks

机译:基于密集连接的深神经网络的肝病筛查

获取原文
获取原文并翻译 | 示例

摘要

Liver disease is an important public health problem. Liver Function Tests (LFT) is the most achievable test for liver disease diagnosis. Most liver diseases are manifested as abnormal LFT. Liver disease screening by LFT data is helpful for computer aided diagnosis. In this paper, we propose a densely connected deep neural network (DenseDNN), on 13 most commonly used LFT indicators and demographic information of subjects for liver disease screening. The algorithm was tested on a dataset of 76,914 samples (more than 100 times of data than the previous datasets). The Area Under Curve (AUC) of DenseDNN is 0.8919, that of DNN is 0.8867, that of random forest is 0.8790, and that of logistic regression is 0.7974. The performance of deep learning models are significantly better than conventional methods. As for the deep learning methods, DenseDNN shows better performance than DNN. (C) 2019 Published by Elsevier Ltd.
机译:肝病是一个重要的公共卫生问题。 肝功能试验(LFT)是肝病诊断最可观的测试。 大多数肝病表现为异常的LFT。 肝病通过LFT数据进行筛选有助于计算机辅助诊断。 在本文中,我们提出了一种密集地连接的深神经网络(Densednn),13个最常用的Liver疾病筛查受试者的人口统计信息。 该算法在76,914个样本的数据集上进行了测试(比上一个数据集超过100多次)。 Densednn的曲线(AUC)下的区域为0.8919,DNN为0.8867,随机森林为0.8790,逻辑回归的曲线为0.7974。 深度学习模型的性能明显优于传统方法。 至于深度学习方法,Densednn显示出比DNN更好的性能。 (c)2019年由elestvier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号