...
首页> 外文期刊>Nano Energy >Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage
【24h】

Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage

机译:用于高钠离子杂交超级电容器的金属氧化物基(MN2 + / NB5 +)阳极的控制设计:混合离子储存的协同机制

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the different energy storage mechanisms, anode electrodes have been challenging to match cathode ones in sodium-ion hybrid supercapacitors (Na-HSCs), resulting in low energy and power densities of the device. As a result, engineering anode materials with excellent electrochemical performance has aroused a great deal of interest. In this work, metal oxides (Mn2+/Nb5+) embedded into interconnected hollow carbon nanoboxes (MnO@HCNb and NaNbO3@HCNb) are fabricated by a simple template-assisted CVD method. Such a unique structure provides shortened solid-state transportation pathway and sufficient adsorption sites for Na+, with differing energy storage mechanisms from traditional Faradic reaction. Benefiting from it, the MnO@HCNb electrode exhibits an outstanding rate performance and an ultra-long lifespan of more than 10,000 cycles with 88.6% of capacity retention, which is rarely reported for oxide-based anodes. Moreover, energy storage mechanism of the composite and the important role of Mn/Na2O interface generated inside the core (MnO) - shell (C) structure during conversion reaction have been revealed. Hybrid ion storage mechanisms (adsorption, Faradic reaction and intercalation) are proposed with desirable compatibility, exhibiting uniform capacitive electrochemical behavior. Coupling with activated carbon cathode, a full cell of Na-HSC demonstrates a high energy density of 116 Wh kg(-1) at 99 W kg(-1) and 56.4 Wh kg(-1) at 1.8 kW kg(-1). Indeed, this work is inspiring to other researchers to further improve the electrochemical performance of anode materials by adjusting their energy storage mechanisms through structural reconstruction.
机译:由于储能机构不同,阳极电极对钠离子杂交超级电容器(NA-HSC)中的阴极匹配具有挑战性,导致装置的低能量和功率密度。结果,具有优异的电化学性能的工程阳极材料引起了很多兴趣。在这项工作中,通过简单的模板辅助CVD方法制造嵌入互连的中空碳纳米氧氧氧氧化物(MNO 2 HCNB和NaNBO 3)中的金属氧化物(Mn2 + / Nb5 +)。这种独特的结构为Na +提供了缩短的固态运输途径和足够的吸附部位,具有传统的法律反应的不同能量存储机制。受益于它,MNO @ HCNB电极具有出色的速率性能和超过10,000个循环的超长寿命,容量保持的88.6%,很少报道基于氧化物的阳极。此外,已经揭示了在转化反应期间核心(MNO) - 壳(C)结构内产生的复合材料的能量储存机制和Mn / Na2O界面的重要作用。提出了具有所需相容性的混合离子储存机制(吸附,法拉米反应和嵌入),表现出均匀的电容电化学行为。与活性炭阴极的偶联,Na-HSC的全电池显示在1.8 kW kg(-1)的99W kg(-1)和56.4WHKG(-1)时的116WH kg(-1)的高能量密度。实际上,这项工作是鼓励其他研究人员通过通过结构重建调节其能量存储机制来进一步提高阳极材料的电化学性能。

著录项

  • 来源
    《Nano Energy》 |2020年第2020期|共11页
  • 作者单位

    Xian Univ Technol Xian Key Lab New Energy Mat &

    Devices Inst Adv Electrochem Energy Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Xian Key Lab New Energy Mat &

    Devices Inst Adv Electrochem Energy Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Xian Key Lab New Energy Mat &

    Devices Inst Adv Electrochem Energy Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Xian Key Lab New Energy Mat &

    Devices Inst Adv Electrochem Energy Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Xian Key Lab New Energy Mat &

    Devices Inst Adv Electrochem Energy Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Xian Key Lab New Energy Mat &

    Devices Inst Adv Electrochem Energy Xian 710048 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Metal oxides; Mesoporous; Sodium-ion capacitor; Energy storage; Salt template;

    机译:金属氧化物;中孔;钠离子电容器;储能;盐模板;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号